47 research outputs found

    Patterns and source analysis for atmospheric mercury at Auchencorth Moss, Scotland

    Get PDF
    Gaseous elemental (GEM), particulate bound (PBM) and gaseous oxidised (GOM) mercury species were monitored between 2009-2011 at the rural monitoring site, Auchencorth Moss, Scotland using the Tekran speciation monitoring system. GEM average for the three year period was 1.40 ± 0.19 ng m-3 which is comparable with other northern hemisphere studies. PBM and GOM concentrations are very low in 2009 and 2010 with geometric mean (x/÷ Standard Deviation) PBM values of 2.56 (x/÷ 3.44) and 0.03 (x/÷ 17.72) pg m-3 and geometric mean (x/÷ Standard Deviation) GOM values of 0.11 (x/÷ 4.94) and 0.09 (x/÷ 8.88) pg m-3 respectively. Using wind sector analysis and air mass back trajectories, the importance of local and regional sources on speciated mercury are investigated and we show the long range contribution to GEM from continental Europe, and that the lowest levels are associated with polar and marine air masses from the north west sector

    δ15N of lichens reflects the isotopic signature of ammonia source

    Get PDF
    Although it is generally accepted that δ15N in lichen reflects predominating N isotope sources in the environment, confirmation of the direct correlation between lichen δ15N and atmospheric δ15N is still missing, especially under field conditions with most confounding factors controlled. To fill this gap and investigate the response of lichens with different tolerance to atmospheric N deposition, thalli of the sensitive Evernia prunastri and the tolerant Xanthoria parietina were exposed for ten weeks to different forms and doses of N in a field manipulation experiment where confounding factors were minimized. During this period, several parameters, namely total N, δ15N and chlorophyll a fluorescence, were measured. Under the experimental conditions, δ15N in lichens quantitatively responded to the δ15N of released gaseous ammonia (NH3). Although a high correlation between the isotopic signatures in lichen tissue and supplied N was found both in tolerant and sensitive species, chlorophyll a fluorescence indicated that the sensitive species very soon lost its photosynthetic functionality with increasing N availability. The most damaging response to the different N chemical forms was observed with dry deposition of NH3, although wet deposition of ammonium ions had a significant observable physiological impact. Conversely, there was no significant effect of nitrate ions on chlorophyll a fluorescence, implying differential sensitivity to dry deposition versus wet deposition and to ammonium versus nitrate in wet deposition. Evernia prunastri was most sensitive to NH3, then NH4+, with lowest sensitivity to NO3−. Moreover, these results confirm that lichen δ15N can be used to indicate the δ15N of atmospheric ammonia, providing a suitable tool for the interpretation of the spatial distribution of NH3 sources in relation to their δ15N signal

    Water soluble aerosols and gases at a UK background site. Part 1: Controls of PM2.5 and PM10 aerosol composition

    Get PDF
    There is limited availability of long-term, high temporal resolution, chemically speciated aerosol measurements which can provide further insight into the health and environmental impacts of particulate matter. The Monitor for AeRosols and Gases (MARGA, Applikon B.V., NL) allows for the characterisation of the inorganic components of PM10 and PM2.5 (NH4+, NO3-, SO42-, Cl-, Na+, K+, Ca2+, Mg2+) and inorganic reactive gases (NH3, SO2, HCl, HONO and HNO3) at hourly resolution. The following study presents 6.5 years (June 2006 to December 2012) of quasi-continuous observations of PM2.5 and PM10 using the MARGA at the UK EMEP supersite, Auchencorth Moss, SE Scotland. Auchencorth Moss was found to be representative of a remote European site with average total water soluble inorganic mass of PM2.5 of 3.82 μg m−3. Anthropogenically derived secondary inorganic aerosols (sum of NH4+, NO3- and nss-SO42−) were the dominating species (63 %) of PM2.5. In terms of equivalent concentrations, NH4+ provided the single largest contribution to PM2.5 fraction in all seasons. Sea salt was the main component (73 %) of the PMcoarse fraction (PM10-PM2.5), though NO3- was also found to make a relatively large contribution to the measured mass (17 %) providing evidence of considerable processing of sea salt in the coarse mode. There was on occasions evidence of aerosol from combustion events being transported to the site in 2012 as high K+ concentrations (deviating from the known ratio in sea salt) coincided with increases in black carbon at the site. Pollution events in PM10 (defined as concentrations > 12 μg m−3) were on average dominated by NH4+ and NO3-, where smaller loadings at the site tended to be dominated by sea salt. As with other western European sites, the charge balance of the inorganic components resolved were biased towards cations, suggesting the aerosol was basic or more likely that organic acids contributed to the charge balance. This study demonstrates the UK background atmospheric composition is primarily driven by meteorology with sea salt dominating air masses from the Atlantic Ocean and the Arctic, whereas secondary inorganic aerosols tended to dominate air masses from continental Europe

    Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands: responses to climatic and environmental changes

    Get PDF
    In this study, we compare annual fluxes of methane (CH4), nitrous oxide (N2O) and soil respiratory carbon dioxide (CO2) measured at nine European peatlands (n = 4) and shrublands (n = 5). The sites range from northern Sweden to Spain, covering a span in mean annual air temperature from 0 to 16 �C, and in annual precipitation from 300 to 1300mmyr−1. The effects of climate change, including temperature increase and prolonged drought, were tested at five shrubland sites. At one peatland site, the long-term (>30 yr) effect of drainage was assessed, while increased nitrogen deposition was investigated at three peatland sites. The shrublands were generally sinks for atmospheric CH4, whereas the peatlands were CH4 sources, with fluxes ranging from −519 to +6890 mgCH4-Cm−2 yr−1 across the studied ecosystems. At the peatland sites, annual CH4 emission increased with mean annual air temperature, while a negative relationship was found between net CH4 uptake and the soil carbon stock at the shrubland sites. Annual N2O fluxes were generally small ranging from −14 to 42 mgN2O-Nm−2 yr−1. Highest N2O emission occurred at the sites that had highest nitrate (NO− 3 ) concentration in the soil water. Furthermore, experimentally increased NO− 3 deposition led to increased N2O efflux, whereas prolonged drought and long-term drainage reduced the N2O efflux. Soil CO2 emissions in control plots ranged from 310 to 732 gCO2-Cm−2 yr−1. Drought and long-term drainage generally reduced the soil CO2 efflux, except at a hydric shrubland where drought tended to increase soil respiration. In terms of fractional importance of each greenhouse gas to the total numerical global warming response, the change in CO2 efflux dominated the response in all treatments (ranging 71–96 %), except for NO− 3 addition where 89% was due to change in CH4 emissions. Thus, in European peatlands and shrublands the effect on global warming induced by the investigated anthropogenic disturbances will be dominated by variations in soil CO2 fluxes

    UK Eutrophying and Acidifying Atmospheric Pollutants Monitoring networks UKEAP

    Get PDF
    In 2012 the complete dataset from the Defra funded UK Eutrophying and Acidifying Atmospheric Pollutants National Ammonia MOnitoring Network and the Acid Gas and aerosol network was prepared and submitted to EMEP for publication in the EMEP database. The talk gave an overview of the measurements being made and the scientific purpose of them

    Dry deposition of ammonia on rain collectors. Interim report to AEA Technology

    Get PDF

    Estimate of annual NH3 dry deposition to a fumigated ombrotrophic bog using concentration-dependent deposition velocities

    Get PDF
    Estimates of the dry deposition of ammonia (NH3) gas in a field fumigation experiment on an ombrotrophic bog have been made using the inferential technique, with measured wind speed at 2 m, and air concentrations at two heights above the vegetation. The parameters for a concentration-dependent surface resistance term have been derived from flux measurements over the same vegetation in a chamber study, separating stomatal from non-stomatal resistances. Annual NH3-N deposition in each of the 4 years 2003-2006 was estimated to increase from 3.0 ± 0.2 kg N ha-1y-1 in ambient air, with an NH3 concentration at 0.5 m above the canopy of 0.7 μg m-3, to 50-70 kg N ha-1y-1 where annual average air concentrations were 70-90 μg m-3 and concentrations during fumigation were up to 1600 μg m-3. The equivalent deposition velocities (at z=0.5 m) were 0.016 m s-1 in ambient air and 0.003 m s-1 at 100 μg m-3. The differences between annual deposition estimates made from independent air concentration data at 0.1 m and 0.5 m above the canopy were small for distances more than 10 m from the source, after vertical mixing was complete. Over 4 years (2003 to 2006) and at 8 sampling points more than 10 m from the NH3 source, the mean difference between the dry deposition estimates, using NH3 concentrations measured independently at 0.1 m and 0.5 m above the canopy, was 2%. Use of a constant surface resistance, with no concentration dependence, as commonly used in inferential models of dry deposition, would have predicted deposition up to 8 times too large

    Fate of N in a peatland, Whim bog: immobilisation in the vegetation and peat, leakage into pore water and losses as N2O depend on the form of N

    Get PDF
    Peatlands represent a vast carbon reserve that has accumulated under conditions of low nitrogen availability. Given the strong coupling between the carbon and nitrogen cycles, we need to establish the consequences of the increase in reactive nitrogen deposition for the sustainability of peatlands, and whether the form in which the nitrogen is deposited makes a difference. We have addressed these questions using a globally unique field simulation of reactive N deposition as dry deposited ammonia and wet deposited reduced N, ammonium and oxidised N, nitrate, added as ammonium chloride or sodium nitrate, to an ombrotrophic peatland, Whim bog in SE Scotland. Here we report the fate of 56 kg N ha−1 yr−1 additions over 10 yr and the consequences. The effects of 10 yr of reactive N additions depended on the form in which the N was applied. Ammonia-N deposition caused the keystone Sphagnum species, together with the main shrub Calluna and the pleurocarpous mosses, to disappear, exposing up to 30% of the peat surface. This led to a significant increase in soil water nitrate and nitrous oxide emissions. By contrast wet deposited N, despite significantly reducing the cover of Sphagnum and Pleurozium moss, did not have a detrimental effect on Calluna cover nor did it significantly change soil water N concentrations or nitrous oxide emissions. Importantly 10 yr of wet deposited N did not bare the peat surface nor significantly disrupt the vegetation enabling the N to be retained within the carbon rich peatland ecosystems. However, given the significant role of Sphagnum in maintaining conditions that retard decomposition, this study suggests that all nitrogen forms will eventually compromise carbon sequestration by peatlands through loss of some keystone Sphagnum species

    Response of Sphagnum papillosum and Drosera rotundifolia to reduced and oxidised wet nitrogen deposition

    Get PDF
    We transplanted Sphagnum ‘turfs’ containing abundant Drosera rotundifolia into an existing nitrogen deposition experiment at Whim Moss near Edinburgh. These mesocosms received simulated N deposition as either NH4+ or NO3-, to give total N deposition rates of approximately 8, 16 or 32, or 64 kg N ha-1 year-1. Simulated N deposition was added in a realistic way (i.e., with rainfall throughout the year). The δ15N of this added N was elevated relative to background N. We measured the tissue chemistry and δ15N of Sphagnum papillosum and D. rotundifolia over two years after transplant. Our aim was to determine uptake of the deposited N and the impact on S. papillosum tissue chemistry and D. rotundifolia tissue chemistry and ecology. We found clear, significant impacts of N deposition on S. papillosum, with increased capitula N content and reduced C:N ratio. Increased δ15N indicated uptake of deposited N. The response of D. rotundifolia was less clear with impacts only at the highest rate of N deposition. There was no evidence of differential uptake of reduced or oxidized wet N deposition by either S. papillosum or D. rotundifolia. Using the natural abundance stable isotope method we estimated the minimum contribution of prey N to the total N in D. rotundifolia to be 35%. The results suggest that differences in the uptake of reduced or oxidized wet N deposition might not be ecologically significant when wet N deposition is added realistically. They also support the suggestion that a model of N dynamics in Sphagnum-dominated ecosystems that includes the role of Sphagnum as a small-scale ecosystem engineer, is required to predict vascular plant responses to N deposition accurately
    corecore