1,427 research outputs found

    Rapidity Distributions of Dileptons from a Hadronizing Quark-Gluon Plasma

    Get PDF
    It has been predicted that dilepton production may be used as a quark-gluon plasma probe. We calculate the rapidity distributions of thermal dileptons produced by an evolving quark-gluon plasma assuming a longitudinal scaling expansion with initial conditions locally determined from the hadronic rapidity density. These distributions are compared with Drell-Yan production and semileptonic charm decays at invariant mass M=2M = 2, 4, and 6 GeV.Comment: 17 pages (standard LaTeX), 6 figures (available as topdraw files or printed versions upon request), GSI-93-6

    Scanning the Quark-Gluon Plasma with Charmonium

    Full text link
    We suggest the variation of charmonium suppression with Feynman x_F in heavy ion collisions as a novel and sensitive probe for the properties of the matter created in such reactions. In contrast to the proton-nucleus case where nuclear suppression is weakest at small x_F, final state interactions with the comoving matter create a minimum at x_F=0, which is especially deep and narrow if a quark-gluon plasma is formed. While a particularly strong effect is predicted at SPS, at the higher RHIC energy it overlaps with the expected sharp variation with x_F of nuclear effects and needs comparison with proton-nucleus data. If thermal enhancement of J/\Psi production takes over at the energies of RHIC and LHC, it will form an easily identified peak, rather than dip in x_F dependence. We predict a steep dependence on centrality and suggest that this new probe is complementary to the dependence on transverse energy, and is more sensitive to a scenario of final state interactions.Comment: 5 pages including 3 figures. Stylistic and clarifying corrections are mad

    An Absolute Flux Density Measurement of the Supernova Remnant Casseopia A at 32 GHz

    Get PDF
    We report 32 GHz absolute flux density measurements of the supernova remnant Cas A, with an accuracy of 2.5%. The measurements were made with the 1.5-meter telescope at the Owens Valley Radio Observatory. The antenna gain had been measured by NIST in May 1990 to be 0.505±0.007mKJy0.505 \pm 0.007 \frac{{\rm mK}}{{\rm Jy}}. Our observations of Cas A in May 1998 yield Scas,1998=194±5JyS_{cas,1998} = 194 \pm 5 {\rm Jy}. We also report absolute flux density measurements of 3C48, 3C147, 3C286, Jupiter, Saturn and Mars.Comment: 30 pages, 4 figures; accepted for publication by AJ. Revised systematic error budget, corrected typos, and added reference

    QUaD: A High-Resolution Cosmic Microwave Background Polarimeter

    Get PDF
    We describe the QUaD experiment, a millimeter-wavelength polarimeter designed to observe the Cosmic Microwave Background (CMB) from a site at the South Pole. The experiment comprises a 2.64 m Cassegrain telescope equipped with a cryogenically cooled receiver containing an array of 62 polarization-sensitive bolometers. The focal plane contains pixels at two different frequency bands, 100 GHz and 150 GHz, with angular resolutions of 5 arcmin and 3.5 arcmin, respectively. The high angular resolution allows observation of CMB temperature and polarization anisotropies over a wide range of scales. The instrument commenced operation in early 2005 and collected science data during three successive Austral winter seasons of observation.Comment: 23 pages, author list and text updated to reflect published versio

    IGR J18483-0311: an accreting X-ray pulsar observed by INTEGRAL

    Get PDF
    IGR J18483-0311 is a poorly known transient hard X-ray source discovered by INTEGRAL during observations of the Galactic Center region performed between 23--28 April 2003. Aims: To detect new outbursts from IGR J18483-0311 using INTEGRAL and archival Swift XRT observations and finally to characterize the nature of this source using the optical/near-infrared (NIR) information available through catalogue searches. Results: We report on 5 newly discovered outbursts from IGR J18483-0311 detected by INTEGRAL.For two of them it was possible to constrain a duration of the order of a few days. The strongest outburst reached a peak flux of 120 mCrab (20--100 keV): its broad band JEM--X/ISGRI spectrum (3--50 keV) is best fitted by an absorbed cutoff power law with photon index=1.4+/-0.3, cutoff energy of ~22 keV and Nh ~9x10^22 cm^-2. Timing analysis of INTEGRAL data allowed us to identify periodicities of 18.52 days and 21.0526 seconds which are likely the orbital period of the system and the spin period of the X-ray pulsar respectively. Swift XRT observations of IGR J18483-0311 provided a very accurate source position which strongly indicates a highly reddened star in the USNO--B1.0 and 2MASS catalogues as its possible optical/NIR counterpart. Conclusions: The X-ray spectral shape, the periods of 18.52 days and 21.0526 seconds, the high intrinsic absorption, the location in the direction of the Scutum spiral arm and the highly reddened optical object as possible counterpart, all favour the hypothesis that IGR J18483-0311 is a HMXB with a neutron star as compact companion. The system is most likely a Be X-ray binary, but a Supergiant Fast X-ray Transient nature can not be entirely excluded.Comment: accepted for publication in A&A, 10 pages, 17 figures, 4 table

    The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter

    Get PDF
    The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric array designed to study the polarization of the cosmic microwave background radiation (CMB) and galactic foreground emission. Such measurements probe the energy scale of the inflationary epoch, tighten constraints on cosmological parameters, and verify our current understanding of CMB physics. Robinson consists of a 250-mm aperture refractive telescope that provides an instantaneous field-of-view of 17 degrees with angular resolution of 55 and 37 arcminutes at 100 GHz and 150 GHz, respectively. Forty-nine pair of polarization-sensitive bolometers are cooled to 250 mK using a 4He/3He/3He sorption fridge system, and coupled to incoming radiation via corrugated feed horns. The all-refractive optics is cooled to 4 K to minimize polarization systematics and instrument loading. The fully steerable 3-axis mount is capable of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s. Robinson has begun its first season of observation at the South Pole. Given the measured performance of the instrument along with the excellent observing environment, Robinson will measure the E-mode polarization with high sensitivity, and probe for the B-modes to unprecedented depths. In this paper we discuss aspects of the instrument design and their scientific motivations, scanning and operational strategies, and the results of initial testing and observations.Comment: 18 pages, 11 figures. To appear in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, 6275, 200

    Thermal history of the plasma and high-frequency gravitons

    Full text link
    Possible deviations from a radiation-dominated evolution, occurring prior the synthesis of light nuclei, impacted on the spectral energy density of high-frequency gravitons. For a systematic scrutiny of this situation, the Λ\LambdaCDM paradigm must be complemented by (at least two) physical parameters describing, respectively, a threshold frequency and a slope. The supplementary frequency scale sets the lower border of a high-frequency domain where the spectral energy grows with a slope which depends, predominantly, upon the total sound speed of the plasma right after inflation. While the infra-red region of the graviton energy spectrum is nearly scale-invariant, the expected signals for typical frequencies larger than 0.01 nHz are hereby analyzed in a model-independent framework by requiring that the total sound speed of the post-inflationary plasma be smaller than the speed of light. Current (e.g. low-frequency) upper limits on the tensor power spectra (determined from the combined analysis of the three large-scale data sets) are shown to be compatible with a detectable signal in the frequency range of wide-band interferometers. In the present context, the scrutiny of the early evolution of the sound speed of the plasma can then be mapped onto a reliable strategy of parameter extraction including not only the well established cosmological observables but also the forthcoming data from wide band interferometers.Comment: 47 pages, 31 included figures, to appear in Classical and Quantum Gravit

    Energy loss of fast quarks in nuclei

    Get PDF
    We report an analysis of the nuclear dependence of the yield of Drell-Yan dimuons from the 800 GeV/c proton bombardment of 2H^2H, C, Ca, Fe, and W targets. Employing a new formulation of the Drell-Yan process in the rest frame of the nucleus, this analysis examines the effect of initial-state energy loss and shadowing on the nuclear-dependence ratios versus the incident proton's momentum fraction and dimuon effective mass. The resulting energy loss per unit path length is dE/dz=2.32±0.52±0.5-dE/dz = 2.32 \pm 0.52\pm 0.5 GeV/fm. This is the first observation of a nonzero energy loss of partons traveling in nuclear environment.Comment: 5 pages, including 4 figure

    Parton energy loss limits and shadowing in Drell-Yan dimuon production

    Get PDF
    A precise measurement of the ratios of the Drell-Yan cross section per nucleon for an 800 GeV/c proton beam incident on Be, Fe and W targets is reported. The behavior of the Drell-Yan ratios at small target parton momentum fraction is well described by an existing fit to the shadowing observed in deep-inelastic scattering. The cross section ratios as a function of the incident parton momentum fraction set tight limits on the energy loss of quarks passing through a cold nucleus
    corecore