324 research outputs found

    Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit

    Full text link
    We have explored the spatial distribution of an ion cloud trapped in a linear octopole radio-frequency (rf) ion trap. The two-dimensional distribution of the column density of stored silver dimer cations was measured via photofragment-ion yields as a function of the position of the incident laser beam over the transverse cross section of the trap. The profile of the ion distribution was found to be dependent on the number of loaded ions. Under high ion-loading conditions with a significant space-charge effect, ions form a ring profile with a maximum at the outer region of the trap, whereas they are localized near the center axis region at low loading of the ions. These results are explained quantitatively by a model calculation based on equilibrium between the space-charge-induced potential and the effective potential of the multipole rf field. The maximum adiabaticity parameter \eta_max is estimated to be about 0.13 for the high ion-density condition in the present octopole ion trap, which is lower than typical values reported for low ion densities; this is probably due to additional instability caused by the space charge.Comment: 8 pages, 5 figure

    Morphological stability of rod-shaped continuous phases

    Get PDF
    Morphological transition of a rod-shaped phase into a string of spherical particles is commonly observed in the microstructures of alloys during solidification (Ratke and Mueller, 2006). This transition phenomenon can be explained by the classic Plateau-Rayleigh theory which was derived for fluid jets based on the surface area minimization principle. The quintessential work of Plateau-Rayleigh considers tiny perturbations (amplitude much less than the radius) to the continuous phase and for large amplitude perturbations, the breakup condition for the rod-shaped phase is still a knotty issue. Here, we present a concise thermodynamic model based on the surface area minimization principle as well as a non-linear stability analysis to generalize Plateau-Rayleigh’s criterion for finite amplitude perturbations. Our results demonstrate a breakup transition from a continuous phase via dispersed particles towards a uniform-radius cylinder, which has not been found previously, but is observed in our phase-field simulations. This new observation is attributed to a geometric constraint, which was overlooked in former studies. We anticipate that our results can provide further insights on microstructures with spherical particles and cylinder-shaped phases

    Complex plant-derived organic aerosol as ice-nucleating particles – more than the sums of their parts?

    Get PDF
    Quantifying the impact of complex organic particles on the formation of ice crystals in clouds remains challenging, mostly due to the vast number of different sources ranging from sea spray to agricultural areas. In particular, there are many open questions regarding the ice nucleation properties of organic particles released from terrestrial sources such as decaying plant material. In this work, we present results from laboratory studies investigating the immersion freezing properties of individual organic compounds commonly found in plant tissue and complex organic aerosol particles from vegetated environments, without specifically investigating the contribution from biological particles, which may contribute to the overall ice nucleation efficiency observed at high temperatures. To characterize the ice nucleation properties of plant-related aerosol samples for temperatures between 242 and 267 K, we used the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber and the Ice Nucleation SpEctrometer of the Karlsruhe Institute of Technology (INSEKT), which is a droplet freezing assay. Individual plant components (polysaccharides, lignin, soy and rice protein) were mostly less ice active, or similarly ice active, compared to microcrystalline cellulose, which has been suggested by recent studies to be a proxy for quantifying the primary cloud ice formation caused by particles originating from vegetation. In contrast, samples from ambient sources with a complex organic matter composition (agricultural soils and leaf litter) were either similarly ice active or up to 2 orders of magnitude more ice active than cellulose. Of all individual organic plant components, only carnauba wax (i.e., lipids) showed a similarly high ice nucleation activity as that of the samples from vegetated environments over a temperature range between 245 and 252 K. Hence, based on our experimental results, we suggest considering cellulose as being representative for the average ice nucleation activity of plant-derived particles, whereas lignin and plant proteins tend to provide a lower limit. In contrast, complex biogenic particles may exhibit ice nucleation activities which are up to 2 orders of magnitude higher than observed for cellulose, making ambient plant-derived particles a potentially important contributor to the population of ice-nucleating particles in the troposphere, even though major uncertainties regarding their transport to cloud altitude remain

    Additional global climate cooling by clouds due to ice crystal complexity

    Get PDF
    Ice crystal submicron structures have a large impact on the optical properties of cirrus clouds and consequently on their radiative effect. Although there is growing evidence that atmospheric ice crystals are rarely pristine, direct in situ observations of the degree of ice crystal complexity are largely missing. Here we show a comprehensive in situ data set of ice crystal complexity coupled with measurements of the cloud angular scattering functions collected during a number of observational airborne campaigns at diverse geographical locations. Our results demonstrate that an overwhelming fraction (between 61 % and 81 %) of atmospheric ice crystals sampled in the different regions contain mesoscopic deformations and, as a consequence, a similar flat and featureless angular scattering function is observed. A comparison between the measurements and a database of optical particle properties showed that severely roughened hexagonal aggregates optimally represent the measurements in the observed angular range. Based on this optical model, a new parameterization of the cloud bulk asymmetry factor was introduced and its effects were tested in a global climate model. The modelling results suggest that, due to ice crystal complexity, ice-containing clouds can induce an additional short-wave cooling effect of −1.12 W m2 on the top-of-the-atmosphere radiative budget that has not yet been considered

    The Influence of Chemical and Mineral Compositions on the Parameterization of Immersion Freezing by Volcanic Ash Particles

    Get PDF
    Volcanic ash (VA) from explosive eruptions contributes to aerosol loadings in the atmosphere. Aside from the negative impact of VA on air quality and aviation, these particles can alter the optical and microphysical properties of clouds by triggering ice formation, thereby influencing precipitation and climate. Depending on the volcano and eruption style, VA displays a wide range of different physical, chemical, and mineralogical properties. Here, we present a unique data set on the ice nucleation activity of 15 VA samples obtained from different volcanoes worldwide. The ice nucleation activities of these samples were studied in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber as well as with the Ice Nucleation Spectrometer of the Karlsruhe Institute of Technology (INSEKT). All VA particles nucleated ice in the immersion freezing mode from 263 to 238K with ice nucleation active site (INAS) densities ranging from ∼105^{5} to 1011^{11} m−2^{-2}, respectively. The variabilities observed among the VA samples, at any given temperature, range over 3.5 orders of magnitude. The ice-nucleating abilities of VA samples correlate to varying degrees with their bulk pyroxene and plagioclase contents as a function of temperature. We combined our new data set with existing literature data to develop an improved ice nucleation parameterization for natural VA in the immersion freezing mode. This should be useful for modeling the impact of VA on clouds

    Angular Dependences of Third Harmonic Generation from Microdroplets

    Full text link
    We present experimental and theoretical results for the angular dependence of third harmonic generation (THG) of water droplets in the micrometer range (size parameter 62<ka<24862<ka<248). The THG signal in pp- and ss-polarization obtained with ultrashort laser pulses is compared with a recently developed nonlinear extension of classical Mie theory including multipoles of order l≤250l\leq250. Both theory and experiment yield over a wide range of size parameters remarkably stable intensity maxima close to the forward and backward direction at ``magic angles''. In contrast to linear Mie scattering, both are of comparable intensity.Comment: 4 pages, RevTeX, 3 figures available on request from [email protected], submitted to PR
    • …
    corecore