876 research outputs found

    Archaeomagnetic results from Finnish bricks and potsherds

    Get PDF

    Measuring Quality of Care: A Rasch Validity Analysis of the Good Nursing Care Scale

    Get PDF
    BACKGROUND: Patient-centeredness is emphasized in both health policies and practice, calling for reliable instruments for the evaluation of the quality of nursing care.PURPOSE: The purpose was to analyze the psychometric properties of the Good Nursing Care Scale (GNCS) in a sample of surgical patients and nurses.METHODS: An explorative cross-sectional study design was used. Data were collected with the 40-item GNCS from surgical patients (n = 476) and nurses (n = 167) in Finland. The data were analyzed with Rasch analysis.RESULTS: The GNCS provided evidence of unidimensionality with acceptable goodness-of-fit to the Rasch model in both samples. Person-separation validity was acceptable. Person misfit was reasonable. The Rasch-equivalent Cronbach α was 0.81 (patient data) and 0.88 (nurse data).CONCLUSIONS: The findings support that the GNCS is a psychometrically sound instrument that can be used in measuring the quality of nursing care, from the perspective of both patients and nurses.</div

    Creating nanoporous graphene with swift heavy ions

    Get PDF
    This article has an erratum: DOI 10.1016/j.carbon.2017.03.065We examine swift heavy ion-induced defect production in suspended single layer graphene using Raman spectroscopy and a two temperature molecular dynamics model that couples the ionic and electronic subsystems. We show that an increase in the electronic stopping power of the ion results in an increase in the size of the pore-type defects, with a defect formation threshold at 1.22–1.48 keV/layer. We also report calculations of the specific electronic heat capacity of graphene with different chemical potentials and discuss the electronic thermal conductivity of graphene at high electronic temperatures, suggesting a value in the range of 1 Wm−1 K−1. These results indicate that swift heavy ions can create nanopores in graphene, and that their size can be tuned between 1 and 4 nm diameter by choosing a suitable stopping power.Peer reviewe

    Hoitotyöntekijöiden itsearvioitu jalkaterveys

    Get PDF

    Elongation mechanism of the ion shaping of embedded gold nanoparticles under swift heavy ion irradiation

    Get PDF
    The elongation process under swift heavy ion irradiation (74 MeV Kr ions) of gold NPs, with a diameter in the range 10-30 nm, and embedded in a silica matrix has been investigated by combining experiment and simulation techniques: three-dimensional thermal spike (3DTS), molecular dynamics (MD) and a phenomenological simulation code specially developed for this study. 3DTS simulations evidence the formation of a track in the host matrix and the melting of the NP after the passage of the impinging ion. MD simulations demonstrate that melted NPs have enough time to expand after each ion impact. Our phenomenological simulation relies on the expansion of the melted NP, which flows in the track in silica with modified (lower) density, followed by its recrystallization upon cooling. Finally, the elongation of the spherical NP into a cylindrical one, with a length proportional to its initial size and a width close to the diameter of the track, is the result of the superposition of the independent effects of each expansion/recrystallization process occurring for each ion impact. In agreement with experiment, the simulation shows the gradual elongation of spherical NPs in the ion-beam direction until their widths saturate in the steady state and reach a value close to the track diameter. Moreover, the simulations indicate that the expansion of the gold NP is incomplete at each ion impact.Peer reviewe

    Shape coexistence at the proton drip-line: First identification of excited states in 180Pb

    Full text link
    Excited states in the extremely neutron-deficient nucleus, 180Pb, have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaskyla. This study lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross-section of only 10 nb for the 92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and 184Pb is seen, where the prolate minimum continues to rise beyond the N=104 mid-shell with respect to the spherical ground state. Beyond mean-field calculations are in reasonable correspondence with the trends deduced from experiment.Comment: 5 pages, 4 figures, submitted to Phys.Rev.

    Program analysis is harder than verification: A computability perspective

    Get PDF
    We study from a computability perspective static program analysis, namely detecting sound program assertions, and verification, namely sound checking of program assertions. We first design a general computability model for domains of program assertions and correspond- ing program analysers and verifiers. Next, we formalize and prove an instantiation of Rice\u2019s theorem for static program analysis and verifica- tion. Then, within this general model, we provide and show a precise statement of the popular belief that program analysis is a harder prob- lem than program verification: we prove that for finite domains of pro- gram assertions, program analysis and verification are equivalent prob- lems, while for infinite domains, program analysis is strictly harder than verification

    On the equivalence of pairing correlations and intrinsic vortical currents in rotating nuclei

    Full text link
    The present paper establishes a link between pairing correlations in rotating nuclei and collective vortical modes in the intrinsic frame. We show that the latter can be embodied by a simple S-type coupling a la Chandrasekhar between rotational and intrinsic vortical collective modes. This results from a comparison between the solutions of microscopic calculations within the HFB and the HF Routhian formalisms. The HF Routhian solutions are constrained to have the same Kelvin circulation expectation value as the HFB ones. It is shown in several mass regions, pairing regimes, and for various spin values that this procedure yields moments of inertia, angular velocities, and current distributions which are very similar within both formalisms. We finally present perspectives for further studies.Comment: 8 pages, 4 figures, submitted to Phys. Rev.

    Graphitization of amorphous carbon by swift heavy ion impacts : Molecular dynamics simulation

    Get PDF
    Stable C-C bonds existing in several sp hybridizations place carbon thin films of different structural compositions among the materials most tolerant to radiation damage, for applications in extreme environments. One of such applications, solid state electron stripper foils for heavy-ion accelerators, requires the understanding of the structural changes induced by high-energy ion irradiation. Tolerance of carbon structure to radiation damage, thermal effects and stress waves due to swift heavy ion impacts defines the lifetime and operational efficiency of the foils. In this work, we analyze the consequences of a single swift heavy ion impact on two different amorphous carbon structures by means of molecular dynamic simulations. The structures are constructed by using two different recipes to exclude the correlation of the evolution of sp2-to-sp3 hybridization with the initial condition. Both initial structures contain approximately 60% of sp2-bonded carbon atoms, however, with different degree of clustering of atoms with sp3 hybridization. We simulate the swift heavy ion impact employing an instantaneous inelastic thermal spike model. The analysis of changes in density, bonding content and the number and size of carbon primitive rings reveals graphitization of the material within the ion track, with higher degree of disorder in the core and more order in the outer shell. Simulated track dimensions are comparable to those observed in small angle x-ray scattering measurements of evaporation-deposited amorphous carbon stripper foils irradiated by 1.14 GeV U ions.Peer reviewe

    Removing Algebraic Data Types from Constrained Horn Clauses Using Difference Predicates

    Full text link
    We address the problem of proving the satisfiability of Constrained Horn Clauses (CHCs) with Algebraic Data Types (ADTs), such as lists and trees. We propose a new technique for transforming CHCs with ADTs into CHCs where predicates are defined over basic types, such as integers and booleans, only. Thus, our technique avoids the explicit use of inductive proof rules during satisfiability proofs. The main extension over previous techniques for ADT removal is a new transformation rule, called differential replacement, which allows us to introduce auxiliary predicates corresponding to the lemmas that are often needed when making inductive proofs. We present an algorithm that uses the new rule, together with the traditional folding/unfolding transformation rules, for the automatic removal of ADTs. We prove that if the set of the transformed clauses is satisfiable, then so is the set of the original clauses. By an experimental evaluation, we show that the use of the differential replacement rule significantly improves the effectiveness of ADT removal, and we show that our transformation-based approach is competitive with respect to a well-established technique that extends the CVC4 solver with induction.Comment: 10th International Joint Conference on Automated Reasoning (IJCAR 2020) - version with appendix; added DOI of the final authenticated Springer publication; minor correction
    corecore