231 research outputs found

    miR-196b target screen reveals mechanisms maintaining leukemia stemness with therapeutic potential.

    Get PDF
    We have shown that antagomiR inhibition of miRNA miR-21 and miR-196b activity is sufficient to ablate MLL-AF9 leukemia stem cells (LSC) in vivo. Here, we used an shRNA screening approach to mimic miRNA activity on experimentally verified miR-196b targets to identify functionally important and therapeutically relevant pathways downstream of oncogenic miRNA in MLL-r AML. We found Cdkn1b (p27Kip1) is a direct miR-196b target whose repression enhanced an embryonic stem cell–like signature associated with decreased leukemia latency and increased numbers of leukemia stem cells in vivo. Conversely, elevation of p27Kip1 significantly reduced MLL-r leukemia self-renewal, promoted monocytic differentiation of leukemic blasts, and induced cell death. Antagonism of miR-196b activity or pharmacologic inhibition of the Cks1-Skp2–containing SCF E3-ubiquitin ligase complex increased p27Kip1 and inhibited human AML growth. This work illustrates that understanding oncogenic miRNA target pathways can identify actionable targets in leukemia

    RbFe2+Fe3+F6: Synthesis, Structure, and Characterization of a New Charge-Ordered Magnetically Frustrated Pyrochlore-Related Mixed-Metal Fluoride

    Get PDF
    A new charge-ordered magnetically frustrated mixed-metal fluoride with a pyrochlore-related structure has been synthesized and characterized. The material, RbFe2F6 (RbFe2+Fe3+F6) was synthesized through mild hydrothermal conditions. The material exhibits a three-dimensional pyrochlore-related structure consisting of corner-shared Fe2+F6 and Fe3+F6 octahedra. In addition to single crystal diffraction data, neutron powder diffraction and magnetometry measurements were carried out. Magnetic data clearly reveal strong antiferromagnetic interactions (a Curie-Weiss temperature of -270 K) but sufficient frustration to prevent ordering until 16 K. No structural phase transformation is detected from the variable temperature neutron diffraction data. Infrared, UV -vis, thermogravimetric, and differential thermal analysis measurements were also performed. First-principles density functional theory (DFT) electronic structure calculations were also done. Crystal data: RbFe2F6, orthorhombic, space group Pnma (No. 62), a = 7.0177(6) {\AA}, b = 7.4499(6) {\AA}, c = 10.1765(8) {\AA}, V = 532.04(8) {\AA}3, Z = 4

    Review of offshore CO2 storage monitoring: operational and research experiences of meeting regulatory and technical requirements

    Get PDF
    Legislation for offshore storage has been developing over the last decade or so and is currently most developed in Europe. Although the large-scale operating sites in Europe were started prior to the regulations coming into force, any planned sites will need to meet these regulatory requirements. Our review of monitoring experiences from both the operating sites and research at experimental injection sites and in areas of natural CO2 seepage suggest that broadly, the technical and regulatory challenges of offshore monitoring can be met. A full report reviewing offshore monitoring including tool capabilities, practicalities and costs is available from IEAGHG (released Q1 2016)

    Prediction of mechanistic subtypes of Parkinson’s using patient-derived stem cell models

    Get PDF
    Parkinson’s disease is a common, incurable neurodegenerative disorder that is clinically heterogeneous: it is likely that different cellular mechanisms drive the pathology in different individuals. So far it has not been possible to define the cellular mechanism underlying the neurodegenerative disease in life. We generated a machine learning-based model that can simultaneously predict the presence of disease and its primary mechanistic subtype in human neurons. We used stem cell technology to derive control or patient-derived neurons, and generated different disease subtypes through chemical induction or the presence of mutation. Multidimensional fluorescent labelling of organelles was performed in healthy control neurons and in four different disease subtypes, and both the quantitative single-cell fluorescence features and the images were used to independently train a series of classifiers to build deep neural networks. Quantitative cellular profile-based classifiers achieve an accuracy of 82%, whereas image-based deep neural networks predict control and four distinct disease subtypes with an accuracy of 95%. The machine learning-trained classifiers achieve their accuracy across all subtypes, using the organellar features of the mitochondria with the additional contribution of the lysosomes, confirming the biological importance of these pathways in Parkinson’s. Altogether, we show that machine learning approaches applied to patient-derived cells are highly accurate at predicting disease subtypes, providing proof of concept that this approach may enable mechanistic stratification and precision medicine approaches in the future

    Genomic diversity of novel strains of mammalian gut microbiome derived Clostridium XIVa strains is driven by mobile genetic element acquisition

    Get PDF
    Despite advances in sequencing technologies that enable a greater understanding of mammalian gut microbiome composition, our ability to determine a role for individual strains is hampered by our inability to isolate, culture and study such microbes. Here we describe highly unusual Clostridium XIVa group strains isolated from the murine gut. Genome sequencing indicates that these strains, Clostridium symbiosum LM19B and LM19R and Clostridium clostridioforme LM41 and LM42, have significantly larger genomes than most closely related strains. Genomic evidence indicates that the isolated LM41 and LM42 strains diverge from most other Clostridium XIVa strains and supports reassignment of these groups at genus-level. We attribute increased C. clostridioforme LM41 and LM42 genome size to acquisition of mobile genetic elements including dozens of prophages, integrative elements, putative group II introns and numerous transposons including 29 identical copies of the IS66 transposase, and a very large 192 Kb plasmid. antiSmash analysis determines a greater number of biosynthetic gene clusters within LM41 and LM42 than in related strains, encoding a diverse array of potential novel antimicrobial compounds. Together these strains highlight the potential untapped microbial diversity that remains to be discovered within the gut microbiome and indicate that, despite our ability to get a top down view of microbial diversity, we remain significantly blinded to microbe capabilities at the strain level

    Protein aggregation and calcium dysregulation are hallmarks of familial Parkinson's disease in midbrain dopaminergic neurons

    Get PDF
    Mutations in the SNCA gene cause autosomal dominant Parkinson’s disease (PD), with loss of dopaminergic neurons in the substantia nigra, and aggregation of α-synuclein. The sequence of molecular events that proceed from an SNCA mutation during development, to end-stage pathology is unknown. Utilising human-induced pluripotent stem cells (hiPSCs), we resolved the temporal sequence of SNCA-induced pathophysiological events in order to discover early, and likely causative, events. Our small molecule-based protocol generates highly enriched midbrain dopaminergic (mDA) neurons: molecular identity was confirmed using single-cell RNA sequencing and proteomics, and functional identity was established through dopamine synthesis, and measures of electrophysiological activity. At the earliest stage of differentiation, prior to maturation to mDA neurons, we demonstrate the formation of small ÎČ-sheet-rich oligomeric aggregates, in SNCA-mutant cultures. Aggregation persists and progresses, ultimately resulting in the accumulation of phosphorylated α-synuclein aggregates. Impaired intracellular calcium signalling, increased basal calcium, and impairments in mitochondrial calcium handling occurred early at day 34–41 post differentiation. Once midbrain identity fully developed, at day 48–62 post differentiation, SNCA-mutant neurons exhibited mitochondrial dysfunction, oxidative stress, lysosomal swelling and increased autophagy. Ultimately these multiple cellular stresses lead to abnormal excitability, altered neuronal activity, and cell death. Our differentiation paradigm generates an efficient model for studying disease mechanisms in PD and highlights that protein misfolding to generate intraneuronal oligomers is one of the earliest critical events driving disease in human neurons, rather than a late-stage hallmark of the disease

    Chair based exercise in community settings: a cluster randomised feasibility study

    Get PDF
    Background: Some older people who find standard exercise programmes too strenuous may be encouraged to exercise while remaining seated - chair based exercises (CBE). We previously developed a consensus CBE programme (CCBE) following a modified Delphi process. We firstly needed to test the feasibility and acceptability of this treatment approach and explore how best to evaluate it before undertaking a definitive trial. Methods: A feasibility study with a cluster randomised controlled trial component was undertaken to 1. Examine the acceptability, feasibility and tolerability of the intervention and 2. Assess the feasibility of running a trial across 12 community settings (4 day centres, 4 care homes, 4 community groups). Centres were randomised to either CCBE, group reminiscence or usual care. Outcomes were collected to assess the feasibility of the trial parameters: level of recruitment interest and eligibility, randomisation, adverse events, retention, completion of health outcomes, missing data and delivery of the CCBE. Semi- structured interviews were conducted with participants and care staff following the intervention to explore acceptability. Results: 48% (89 out of 184 contacted) of eligible centres were interested in participating with 12 recruited purposively. 73% (94) of the 128 older people screened consented to take part with 83 older people then randomised following mobility testing. Recruitment required greater staffing levels and resources due to 49% of participants requiring a consultee declaration. There was a high dropout rate (40%) primarily due to participants no longer attending the centres. The CCBE intervention was delivered once a week in day centres and community groups and twice a week in care homes. Older people and care staff found the CCBE intervention largely acceptable. Conclusion: There was a good level of interest from centres and older people and the CCBE intervention was largely welcomed. The trial design and governance procedures would need to be revised to maximise recruitment and retention. If the motivation for a future trial is physical health then this study has identified that further work to develop the CCBE delivery model is warranted to ensure it can be delivered at a frequency to elicit physiological change. If the motivation for a future trial is psychological outcomes then this study has identified that the current delivery model is feasible
    • 

    corecore