211 research outputs found
N released from organic amendments is affected by soil management history
A ryegrass bioassay was conducted to investigate the effect of soil management history on nitrogen mineralisation from composted manure and pelleted poultry manure. Soils were used from 2 field experiments comparing conventional and organic/low input management systems. When composted manure was added, soils which had received high rates of composted FYM under biodynamic management released a greater amount of nitrogen for plant uptake than those with a history of mineral or fresh manure fertilisation, suggesting that biological preconditioning may result in greater efficiency of composted FYM as a nitrogen source for plants. “Native” N mineralisation was found to be related to total soil N content
Low temperature/short duration steaming as a sustainable method of soil disinfection
This report was presented at the UK Organic Research 2002 Conference. Soil samples containing resting structures of fungal crop pathogens (Verticillium dahliae, Sclerotinia sclerotiorum, Sclerotium cepivorum, Pythium ultimum), potato cyst nematodes (Globodera rostochiensis and Globodera pallida) and weeds (Chenopodium album and Agropyron repens) were treated with aerated steam in the laboratory at temperatures ranging from 50–80oC in a specially constructed apparatus. Steaming at 50 or 60oC for three minutes, followed by an eight-minute resting period in the steamed soil and immediate removal from the soil thereafter, resulted in 100% kill of all weeds, fungi and nematodes. Low temperature/ short duration soil steaming could become a sustainable alternative to chemical or high-temperature steam soil disinfestation
An observational prospective study of topical acidified nitrite for killing methicillin-resistant Staphylococcus aureus (MRSA) in contaminated wounds
Background Endogenous nitric oxide (NO) kills bacteria and other organisms as part of the innate immune response. When nitrite is exposed to low pH, NO is generated and has been used as an NO delivery system to treat skin infections. We demonstrated eradication of MRSA carriage from wounds using a topical formulation of citric acid (4.5%) and sodium nitrite (3%) creams co-applied for 5 days to 15 wounds in an observational prospective pilot study of 8 patients. Findings Following treatment with topical citric acid and sodium nitrite, 9 of 15 wounds (60%) and 3 of 8 patients (37%) were cleared of infection. MRSA isolates from these patients were all sensitive to acidified nitrite in vitro compared to methicillin-sensitive S. aureus and a reference strain of MRSA. Conclusions Nitric oxide and acidified nitrite offer a novel therapy for control of MRSA in wounds. Wounds that were not cleared of infection may have been re-contaminated or the bioavailability of acidified nitrite impaired by local factors in the tissue
Phonon-assisted radiofrequency absorption by gold nanoparticles resulting in hyperthermia
It is suggested that in gold nanoparticles (GNPs) of about 5 nm sizes used in
the radiofrequency (RF) hyperthermia, an absorption of the RF photon by the
Fermi electron occurs with involvement of the longitudinal acoustic vibrational
mode (LAVM), the dominating one in the distribution of vibrational density of
states (VDOS). This physical mechanism helps to explain two observed phenomena:
the size dependence of the heating rate (HR) in GNPs and reduced heat
production in aggregated GNPs. The argumentation proceeds within the
one-electron approximation, taking into account the discretenesses of energies
and momenta of both electrons and LAVMs. The heating of GNPs is thought to
consist of two consecutive processes: first, the Fermi electron absorbs
simultaneously the RF photon and the LAVM available in the GNP; hereafter the
excited electron gets relaxed within the GNP's boundary, exciting a LAVM with
the energy higher than that of the previously absorbed LAVM. GNPs containing
the Ta and/or Fe impurities are proposed for the RF hyperthermia as promising
heaters with enhanced HRs, and GNPs with rare-earth impurity atoms are also
brought into consideration. It is shown why the maximum HR values should be
expected in GNPs with about 5-7 nm size.Comment: proceedings at the NATO Advanced Research workshop FANEM-2015 (Minsk,
May 25-27, 2015). To be published in the final form in: "Fundamental and
Applied NanoElectroMagnetics" (Springer Science + Business Media B.V.
Assessment of the Socio-Economic Impact of Late Blight and State of the Art of Management in European Organic Potato Production Systems
In Europe, late blight, caused by Phytophthora infestans, is the most devastating disease affecting organic (and conventional) potato production. Under suitable environmental conditions the disease can spread rapidly and it can cause complete crop loss. The extent of damage due to late blight depends on several factors: in organic production systems these factors include climate, choice of variety, soil management and use of crop protection agents such as copper. Therefore, the extent of economic damage varies between European regions.
Council Regulation (EEC) No 2092/91, amended by Commission Regulation (EC) No 473/2002 of 15 March 2002 regulates the use of copper in organic agriculture. Copper has been the single most important control agent in organic late blight control. Therefore, the reduction or an eventual phasing out of copper use will have varying impacts in different regions.
This report presents the results of a detailed survey that has been conducted in 7 European countries in the year 2001. It is a subproject of the EU-funded project Blight-MOP (QLRT 31065). The survey investigates legislative, socio-economic and production parameters. The aim of this study was: (i) to obtain an inventory of the current organic potato production techniques, (ii) to assess the impact of a potential ban of copper on yields and viability of organic potato production and (iii) to identify alternative plant protection strategies that are used by organic farmers.
This report includes:
(i) statistics on yields, farm gate prices, and production techniques,
(ii) an analysis offarmer observations and experiences on the extent and impact of late blight epidemics,
(iii) an analysis of the farmer’s motivations, expectations and their assessment of the potential impact of a copper ban. Using multiple linear regression we identified production factors which appear to consistently contribute to production success
Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects
A three year field study (2007-2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted at the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. The result demonstrated that there was no consistent effect of either organic or conventional soil management across the three years on the diversity or quantity of either diazotrophic or total bacterial communities. However, ordination analyses carried out on data from each individual year showed that factors associated with the different fertility management measures including availability of nitrogen species, organic carbon and pH, did exert significant effects on the structure of both diazotrophic and total bacterial communities. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions. The diazotrophic community showed no significant change in diversity across the three years, however, the total bacterial community significantly increased in diversity year on year. Diversity was always greatest during March for both diazotrophic and total bacterial communities. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. Seasonal effects were less consistent in this quantitative study
Recommended from our members
Composition differences between organic and conventional meat: a systematic literature review and meta-analysis
Demand for organic meat is partially driven by consumer perceptions that organic foods are more nutritious than non-organic foods. However, there have been no systematic reviews comparing specifically the nutrient content of organic and conventionally produced meat. In this study, we report results of a meta-analysis based on sixty-seven published studies comparing the composition of organic and non-organic meat products. For many nutritionally relevant compounds (e.g. minerals, antioxidants and most individual fatty acids (FA)), the evidence base was too weak for meaningful meta-analyses. However, significant differences in FA profiles were detected when data from all livestock species were pooled. Concentrations of SFA and MUFA were similar or slightly lower, respectively, in organic compared with conventional meat. Larger differences were detected for total PUFA and n-3 PUFA, which were an estimated 23 (95 % CI 11, 35) % and 47 (95 % CI 10, 84) % higher in organic meat, respectively. However, for these and many other composition parameters, for which meta-analyses found significant differences, heterogeneity was high, and this could be explained by differences between animal species/meat types. Evidence from controlled experimental studies indicates that the high grazing/forage-based diets prescribed under organic farming standards may be the main reason for differences in FA profiles. Further studies are required to enable meta-analyses for a wider range of parameters (e.g. antioxidant, vitamin and mineral concentrations) and to improve both precision and consistency of results for FA profiles for all species. Potential impacts of composition differences on human health are discussed
PhoR/PhoP two component regulatory system affects biocontrol capability of Bacillus subtilis NCD-2
The Bacillus subtilis strain NCD-2 is an important biocontrol agent against cotton verticillium wilt and cotton sore shin in the field, which are caused by Verticillium dahliae Kleb and Rhizoctonia solani Kuhn, respectively. A mutant of strain NCD-2, designated M216, with decreased antagonism to V. dahliae and R. solani, was selected by mini-Tn10 mutagenesis and in vitro virulence screening. The inserted gene in the mutant was cloned and identified as the phoR gene, which encodes a sensor kinase in the PhoP/PhoR two-component system. Compared to the wild-type strain, the APase activities of the mutant was decreased significantly when cultured in low phosphate medium, but no obvious difference was observed when cultured in high phosphate medium. The mutant also grew more slowly on organic phosphate agar and lost its phosphatidylcholine-solubilizing ability. The suppression of cotton seedling damping-off in vivo and colonization of the rhizosphere of cotton also decreased in the mutant strain when compared with the wild type strain. All of these characteristics could be partially restored by complementation of the phoR gene in the M216 mutant
- …