34 research outputs found

    A blood based 12-miRNA signature of Alzheimer disease patients

    Get PDF
    Background: Alzheimer disease (AD) is the most common form of dementia but the identification of reliable, early and non-invasive biomarkers remains a major challenge. We present a novel miRNA-based signature for detecting AD from blood samples. Results: We apply next-generation sequencing to miRNAs from blood samples of 48 AD patients and 22 unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression levels. Of these, 82 have higher and 58 have lower abundance in AD patient samples. We selected a panel of 12 miRNAs for an RT-qPCR analysis on a larger cohort of 202 samples, comprising not only AD patients and healthy controls but also patients with other CNS illnesses. These included mild cognitive impairment, which is assumed to represent a transitional period before the development of AD, as well as multiple sclerosis, Parkinson disease, major depression, bipolar disorder and schizophrenia. miRNA target enrichment analysis of the selected 12 miRNAs indicates an involvement of miRNAs in nervous system development, neuron projection, neuron projection development and neuron projection morphogenesis. Using this 12-miRNA signature, we differentiate between AD and controls with an accuracy of 93%, a specificity of 95% and a sensitivity of 92%. The differentiation of AD from other neurological diseases is possible with accuracies between 74% and 78%. The differentiation of the other CNS disorders from controls yields even higher accuracies. Conclusions: The data indicate that deregulated miRNAs in blood might be used as biomarkers in the diagnosis of AD or other neurological diseases

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    A High-Potential Trapped State Upon H2-Starvation of a Platinum Electrode in Aqueous Electrolyte

    No full text
    The insufficient supply of H 2 to the anode of a fuel cell (so-called "H 2-starvation") leads to a high electrode potential that can ultimately cause cell failure. Herein we mimicked this H 2-starvation in a liquid electrolyte using a polycrystalline Pt rotating disk electrode (RDE) and demonstrate that this Pt-RDE gets trapped at high potentials even when the H 2-supply is re-establishing. Our results could have significant implications for the durability of Pt-based anode catalysts, and highlight the urgency of verifying the occurrence of this "trapped state" in a fuel cell configuration.ISSN:0013-4651ISSN:1945-711

    Synthesis of Pt3Y and Other Early-Late Intermetallic Nanoparticles by Way of a Molten Reducing Agent.

    No full text
    Early-late intermetallic phases have garnered increased attention recently for their catalytic properties. To achieve the high surface areas needed for industrially relevant applications, these phases must be synthesized as nanoparticles in a scalable fashion. Herein, Pt3Y-targeted as a prototypical example of an early-late intermetallic-has been synthesized as nanoparticles approximately 5-20 nm in diameter via a solution process and characterized by XRD, TEM, EDS, and XPS. The key development is the use of a molten borohydride (MEt3BH, M = Na, K) as both the reducing agent and reaction medium. Readily available halide precursors of the two metals are used. Accordingly, no organic ligands are necessary, as the resulting halide salt byproduct prevents sintering, which further permits dispersion of the nanoscale intermetallic onto a support. The versatility of this approach was validated by the synthesis of other intermetallic phases such as Pt3Sc, Pt3Lu, Pt2Na, and Au2Y

    Hydrogen evolution with hot electrons on a plasmonic-molecular catalyst hybrid system

    No full text
    Plasmonic systems convert light into electrical charges and heat, mediating catalytic transformations. However, there is ongoing controversy regarding the involvement of hot carriers in the catalytic process. In this study, we demonstrate the direct utilisation of plasmon hot electrons in the hydrogen evolution reaction with visible light. We intentionally assemble a plasmonic nanohybrid system comprising NiO/Au/[Co(1,10-Phenanthrolin-5-amine)2(H2O)2], which is unstable at water thermolysis temperatures. This assembly limits the plasmon thermal contribution while ensuring that hot carriers are the primary contributors to the catalytic process. By combining photoelectrocatalysis with advanced in situ spectroscopies, we can substantiate a reaction mechanism in which plasmon-induced hot electrons play a crucial role. These plasmonic hot electrons are directed into phenanthroline ligands, facilitating the rapid, concerted proton-electron transfer steps essential for hydrogen generation. The catalytic response to light modulation aligns with the distinctive profile of a hot carrier-mediated process, featuring a positive, though non-essential, heat contribution. Direct participation of plasmon-induced hot electrons in the photoelectrocatalytic synthesis of hydrogen. This report solves a long-lasting contentious issue surrounding plasmonic materials on catalytic applications

    A method for histopathological study of the multifocal nature of spinal cord lesions in murine experimental autoimmune encephalomyelitis

    No full text
    Experimental autoimmune encephalomyelitis (EAE) is a well-established mouse model for multiple sclerosis and is characterized by infiltration of mononuclear cells and demyelination within the central nervous system along with the clinical symptoms of paralysis. EAE is a multifocal and random disease, which sometimes makes histopathologic analysis of lesions difficult as it may not be possible to predict where lesions will occur, especially when evaluating cross sections of spinal cord. Consequently, lesions may be easily missed due to limited sampling in traditional approaches. To evaluate the entire length of the spinal cord while maintaining anatomic integrity, we have developed a method to section the cord within the decalcified spinal column, which allows for the study of the multifocal nature of this disease and also minimizes handling artifact. HE and Luxol fast blue staining of these spinal cord sections revealed a paucity of lesions in some areas, while others showed marked inflammation and demyelination. The percentage of spinal cord affected by EAE was evaluated at four separate areas of longitudinally sectioned cord and it varied greatly within each animal. Immunohistochemical staining of in situ spinal cords which had undergone decalcification was successful for key immuno-markers used in EAE research including CD3 for T cells, B220 for B cells and F4/80 for murine macrophages. This method will allow investigators to look at the entire spinal cord on a single slide and evaluate the spinal cord with and without classic EAE lesions

    Thermal conditions during heat waves of a mid-European metropolis under consideration of climate change, urban development scenarios and resilience measures for the mid-21st century

    No full text
    In this study we produce two urban development scenarios estimating potential urban sprawl and optimized development concerning building construction, and we simulate their influence on air temperature, surface temperatures and human thermal comfort. We select two heat waves representative for present and future conditions of the mid 21st century and simulations are run with the Town Energy Balance Model (TEB) coupled online and offline to the Weather Research and Forecasting Model (WRF). Global and regional climate change under the RCP8.5 scenario causes an increase of daily maximum air temperature in Vienna by 7 K. The daily minimum air temperature will increase by 2–4 K. Changes caused by urban growth or densification mainly affect air temperature and human thermal comfort locally where new urbanisation takes place and does not occur significantly in the central districts. A combination of near zero-energy standards and increasing albedo of building materials on the city scale accomplishes a maximum reduction of urban canyon temperature achieved by changes in urban parameters of 0.9 K for the minima and 0.2 K for the maxima. Local scale changes of different adaptation measures show that insulation of buildings alone increases the maximum wall surface temperatures by more than 10 K or the maximum mean radiant temperature (MRT) in the canyon by 5 K. Therefore, measures to reduce MRT within the urban canyons like tree shade are needed to complement the proposed measures. This study concludes that the rising air temperatures expected by climate change puts an unprecedented heat burden on Viennese inhabitants, which cannot easily be reduced by measures concerning buildings within the city itself. Additionally, measures such as planting trees to provide shade, regional water sensitive planning and global reduction of greenhouse gas emissions in order to reduce temperature extremes are required
    corecore