52 research outputs found

    Microstructural and mechanical characterization of annealed tungsten (W) and potassium-doped tungsten foils

    Full text link
    Here we show that potassium-doped tungsten foil should be preferred to pure tungsten foil when considering tungsten laminate pipes for structural divertor applications. Potassium-doped tungsten materials are well known from the bulb industry and show an enhanced creep and recrystallization behaviour that can be explained by the formation of potassium-filled bubbles that are surrounding the elongated grains, leading to an interlocking of the microstructure. In this way, the ultra-fine grained (UFG) microstructure of tungsten foil can be stabilized and with it the extraordinary mechanical properties of the foil in terms of ductility, toughness, brittle-to-ductile transition, and radiation resistance. In this paper we show the results of three-point bending tests performed at room temperature on annealed pure tungsten and potassium-doped tungsten foils (800, 900, 1000, 1100, 1200, 1300, 1400, 1600, 1800, 2000, 2200, and 2400 °C for 1 h in vacuum). The microstructural assessment covers the measurement of the hardness and analyses of fractured surfaces as well as a comparison of the microstructure by optical microscopy. The results show that there is a positive effect of potassium-doped tungsten foils compared to pure tungsten foil and demonstrate the potential of the doped foi

    Design and test of the optical fiber assemblies for the scalar magnetic field sensor aboard the JUICE mission

    Get PDF
    A set of optical fiber assemblies has been developed and successfully qualified for its use on a European space science mission to the icy moons of Jupiter (Jupiter Icy Moons Explorer, JUICE), to be launched in 2022. The paper gives an overview of the design challenges, the test methods used for failure detection and screening of the optical fiber cable assemblies as well as the further testing performed in the frame of a lot acceptance qualification

    SERENA:Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo

    Get PDF
    International audienceThe ESA-JAXA BepiColombo mission to Mercury will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric particle dynamics at Mercury as well as their interactions with solar wind, solar radiation, and interplanetary dust. The particle instrument suite SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) is flying in space on-board the BepiColombo Mercury Planetary Orbiter (MPO) and is the only instrument for ion and neutral particle detection aboard the MPO. It comprises four independent sensors: ELENA for neutral particle flow detection, Strofio for neutral gas detection, PICAM for planetary ions observations, and MIPA, mostly for solar wind ion measurements. SERENA is managed by a System Control Unit located inside the ELENA box. In the present paper the scientific goals of this suite are described, and then the four units are detailed, as well as their major features and calibration results. Finally, the SERENA operational activities are shown during the orbital path around Mercury, with also some reference to the activities planned during the long cruise phase

    Correction to: SERENA: Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo

    Get PDF
    International audienc

    Tailored Al2O3-Al2TiO5-TiO2 Composite Ceramics from different Titanium Precursors

    No full text
    Al2 O3 -Al2 TiO5 -TiO2 composites can be obtained by the infiltration of molecular titanium precursors into presintered α-Al2 O3 (corundum) cylinders. Two titanium tetra alkoxides, and two dialkoxy titanium bis (acetylacetonates) serve as precursors for TiO2 (rutile) and Al2 TiO5 (tialite). The precursors were infiltrated as ethanolic solutions. After sintering at 1550, 1600, and 1650°C, the prepared ceramics’ properties were investigated by SEM, in-situ HT-XRD, and conventional XRD. Titanium tetraisopropoxide leads to the highest content of Al2 TiO5 in the composite. The more reactive the precursor, considering the Al2 O3 /precursor interface, the lower and more anisotropic the grain growth, the more homogeneous is the TiO2 contribution and the higher is the content of Al2 TiO5 . Raising the sintering temperature causes an increase of the crystalline Al2 TiO5 content as well as of the grain growth. Moreover, the reactivity of the precursor molecule influences the Ti/(Al+Ti) ratio in the obtained tialite phase
    • 

    corecore