1,777 research outputs found

    Predicting the Future of Superhumps in Classical Nova Systems

    Get PDF
    Oscillations observed in the light curve of Nova V1974 Cygni 1992 since summer 1994 have been interpreted as permanent superhumps. From simple calculations based on the Tidal-Disk Instability model of Osaki, and assuming that the accretion disc is the dominant optical source in the binary system, we predict that the nova will evolve to become an SU UMa system as its brightness declines from its present luminosity by another 2-3 magnitudes. Linear extrapolation of its current rate of fading (in magnitude units) puts the time of this phase transition within the next 2-4 years. Alternatively, the brightness decline will stop before the nova reaches that level, and the system will continue to show permanent superhumps in its light curve. It will then be similar to two other old novae, V603 Aql and CP Pup, that still display the permanent superhumps phenomenon 79 and 55 years, respectively, after their eruptions. We suggest that non-magnetic novae with short orbital periods could be progenitors of permanent superhump systems.Comment: 5 pages, 2 eps. figures, Latex, accepted for publication in MNRA

    Nova V1425 Aquilae 1995 - The Early Appearance of Accretion Processes in An Intermediate Polar Candidate

    Get PDF
    Continuous CCD photometry of Nova Aquilae 1995 was performed through the standard B,V,R and I filters during three nights in 1995 and with the I filter during 18 nights in 1996. The power spectrum of the 1996 data reveals three periodicities in the light curve: 0.2558 d, 0.06005 d and 0.079 d, with peak-to-peak amplitudes of about 0.012, 0.014 and 0.007 mag. respectively. The two shorter periods are absent from the power spectrum of the 1995 light curve, while the long one is probably already present in the light curve of that year. We propose that V1425 Aql should be classified as an Intermediate - Polar CV. Accordingly the three periods are interpreted as the orbital period of the underlying binary system, the spin period of the magnetic white dwarf and the beat period between them. Our results suggest that no later than 15 months after the outburst of the nova, accretion processes are taking place in this stellar system. Matter is being transferred from the cool component, most likely through an accretion disc and via accretion columns on to the magnetic poles of the hot component.Comment: 7 pages, 4 eps. figures, Latex, accepted for publication in MNRA

    A New Interpretation for the Second Peak of T Coronae Borealis Outbursts: A Tilting Disk around a Very Massive White Dwarf

    Get PDF
    A new interpretation for the second peak of T Coronae Borealis (T CrB) outbursts is proposed based on a thermonuclear runaway (TNR) model. The system consists of a very massive white dwarf (WD) with a tilting accretion disk and a lobe-filling red-giant. The first peak of the visual light curve of T CrB outbursts is well reproduced by the TNR model on a WD close to the Chandrasekhar mass (MWD≳1.35 M⊙M_{\rm WD} \gtrsim 1.35 ~M_\odot), while the second peak is reproduced by the combination of the irradiated M-giant and the irradiated tilting disk. The derived fitting parameters are the WD mass MWD∼1.35 M⊙M_{\rm WD} \sim 1.35 ~M_\odot, the M-giant companion mass MRG∼0.7M⊙M_{\rm RG} \sim 0.7 M_\odot (0.6−1.0M⊙0.6-1.0 M_\odot is acceptable), the inclination angle of the orbit i \sim 70 \arcdeg, and the tilting angle of the disk i_{\rm prec} \sim 35 \arcdeg. These parameters are consistent with the recently derived binary parameters of T CrB.Comment: 6 pages including 2 figures, to be published in ApJ Letter

    Footprints Over the Caribbean: Bringing Program Protection in Step with Satellite Technology

    Get PDF
    • …
    corecore