14 research outputs found

    An Extended Targeted Copy Number Variation Detection Array Including 187 Genes for the Diagnostics of Neuromuscular Disorders

    Get PDF
    Background: Our previous array, the Comparative Genomic Hybridisation design (CGH-array) for nemaline myopathy (NM), named the NM-CGH array, revealed pathogenic copy number variation (CNV) in the genes for nebulin (NEB) and tropomyosin 3 (TPM3), as well as recurrent CNVs in the segmental duplication (SD), i.e. triplicate, region of NEB (TRI, exons 82-89, 90-97, 98-105). In the light of this knowledge, we have designed and validated an extended CGH array, which includes a selection of 187 genes known to cause neuromuscular disorders (NMDs). Objective: Our aim was to develop a reliable method for CNV detection in genes related to neuromuscular disorders for routine mutation detection and analysis, as a much-needed complement to sequencing methods. Methods: We have developed a novel custom-made 4×180 k CGH array for the diagnostics of NMDs. It includes the same tiled ultra-high density coverage of the 12 known or putative NM genes as our 8×60 k NM-CGH-array but also comprises a selection of 175 additional genes associated with NMDs, including titin (TTN), at a high to very high coverage. The genes were divided into three coverage groups according to known and potential pathogenicity in neuromuscular disorders. Results: The array detected known and putative CNVs in all three gene coverage groups, including the repetitive regions of NEB and TTN. Conclusions: The targeted neuromuscular disorder 4×180 k array-CGH (NMD-CGH-array v1.0) design allows CNV detection for a broader spectrum of neuromuscular disorders at a high resolution. © 2018 - IOS Press and the authors. All rights reserved.Peer reviewe

    Nemaline myopathy caused by mutations in the nebulin gene may present as a distal myopathy

    No full text
    Mutations in the nebulin gene are the main cause of autosomal recessive nemaline myopathy, with clinical presentations ranging from mild to severe disease. We have previously reported a nonspecific distal myopathy caused by homozygous missense mutations in the nebulin gene in six Finnish patients from four different families. Here we describe three non-Finnish patients in two unrelated families with distal nemaline myopathy caused by four different compound heterozygous nebulin mutations, only one of which is a missense mutation. One of the mutations has previously been identified in one family with the severe form of nemaline myopathy. We conclude that nemaline myopathy and distal myopathy caused by nebulin mutations form a clinical and histological continuum. Nemaline myopathy should be considered as a differential diagnosis in patients presenting with an early-onset predominantly distal myopathy

    Targeted array comparative genomic hybridization: a new diagnostic tool for the detection of large copy number variations in nemaline myopathy-causing genes

    No full text
    Nemaline myopathy (NM) constitutes a heterogeneous group of congenital myopathies. Mutations in the nebulin gene (NEB) are the main cause of recessively inherited NM. NEB is one of the most largest genes in human. To date, 68 NEB mutations, mainly small deletions or point mutations have been published. The only large mutation characterized is the 2.5 kb deletion of exon 55 in the Ashkenazi Jewish population. To investigate any copy number variations in this enormous gene, we designed a novel custom comparative genomic hybridization microarray, NM-CGH, targeted towards the seven known genes causative for NM. During the validation of the NM-CGH array we identified two novel deletions in two different families. The first is the largest deletion characterized in NEB to date, (∼53 kb) encompassing 24 exons. The second deletion (1 kb) covers two exons. In both families, the copy number change was the second mutation to be characterized and shown to have been inherited from one of the healthy carrier parents. In addition to these novel mutations, copy number variation was identified in four samples in three families in the triplicate region of NEB. We conclude that this method appears promising for the detection of copy number variations in NEB

    Exome sequencing reveals a nebulin nonsense mutation in a dog model of nemaline myopathy

    No full text
    Nemaline myopathy (NM) is a congenital muscle disorder associated with muscle weakness, hypotonia, and rod bodies in the skeletal muscle fibers. Mutations in 10 genes have been implicated in human NM, but spontaneous cases in dogs have not been genetically characterized. We identified a novel recessive myopathy in a family of line-bred American bulldogs (ABDs); rod bodies in muscle biopsies established this as NM. Using SNP profiles from the nuclear family, we evaluated inheritance patterns at candidate loci and prioritized TNNT1 and NEB for further investigation. Whole exome sequencing of the dam, two affected littermates, and an unaffected littermate revealed a nonsense mutation in NEB (g.52734272 C>A, S8042X). Whole tissue gel electrophoresis and western blots confirmed a lack of full-length NEB in affected tissues, suggesting nonsense-mediated decay. The pathogenic variant was absent from 120 dogs of 24 other breeds and 100 unrelated ABDs, suggesting that it occurred recently and may be private to the family. This study presents the first molecularly characterized large animal model of NM, which could provide new opportunities for therapeutic approaches
    corecore