44 research outputs found

    A likely pathogenic variant in the SLC20A2 gene presenting with progressive myoclonus

    Get PDF
    A 60-year-old man is presented with progressive involuntary muscle movements and neuropsychiatric symptoms who developed a variety of additional complaints over 2 years. Brain imaging revealed bilateral basal ganglia calcifications suggesting primary familial brain calcification. Analysis of the SLC20A2 gene revealed a missense mutation (c.541C>T, p.(Arg181Trp)), in silico predicted to be deleterious and not found in available databases. Segregation analysis confirmed his asymptomatic father to harbor the same mutation, though on brain imaging basal ganglia calcifications were found. This report illustrates the intrafamilial variability of the phenotype and generalized myoclonus as the presenting symptom

    Generation of two human iPSC lines, FINCBi002-A and FINCBi003-A, carrying heteroplasmic macrodeletion of mitochondrial DNA causing Pearson's syndrome

    Get PDF
    Pearson marrow pancreas syndrome (PMPS) is a sporadic mitochondrial disease, resulting from the clonal expansion of a mutated mitochondrial DNA (mtDNA) molecule bearing a macro-deletion, and therefore missing essential genetic information. PMPS is characterized by the presence of deleted (Δ) mtDNA that co-exist with the presence of a variable amount of wild-type mtDNA, a condition termed heteroplasmy. All tissues of the affected individual, including the haemopoietic system and the post-mitotic, highly specialized tissues (brain, skeletal muscle, and heart) contain the large-scale mtDNA deletion in variable amount. We generated human induced pluripotent stem cells (hiPSCs) from two PMPS patients, carrying different type of large-scale deletion

    A novel de novo dominant mutation in ISCU associated with mitochondrial myopathy

    Get PDF
    BACKGROUND: Hereditary myopathy with lactic acidosis and myopathy with deficiency of succinate dehydrogenase and aconitase are variants of a recessive disorder characterised by childhood-onset early fatigue, dyspnoea and palpitations on trivial exercise. The disease is non-progressive, but life-threatening episodes of widespread weakness, metabolic acidosis and rhabdomyolysis may occur. So far, this disease has been molecularly defined only in Swedish patients, all homozygous for a deep intronic splicing affecting mutation in ISCU encoding a scaffold protein for the assembly of iron-sulfur (Fe-S) clusters. A single Scandinavian family was identified with a different mutation, a missense change in compound heterozygosity with the common intronic mutation. The aim of the study was to identify the genetic defect in our proband. METHODS: A next-generation sequencing (NGS) approach was carried out on an Italian male who presented in childhood with ptosis, severe muscle weakness and exercise intolerance. His disease was slowly progressive, with partial recovery between episodes. Patient's specimens and yeast models were investigated. RESULTS: Histochemical and biochemical analyses on muscle biopsy showed multiple defects affecting mitochondrial respiratory chain complexes. We identified a single heterozygous mutation p.Gly96Val in ISCU, which was absent in DNA from his parents indicating a possible de novo dominant effect in the patient. Patient fibroblasts showed normal levels of ISCU protein and a few variably affected Fe-S cluster-dependent enzymes. Yeast studies confirmed both pathogenicity and dominance of the identified missense mutation. CONCLUSION: We describe the first heterozygous dominant mutation in ISCU which results in a phenotype reminiscent of the recessive disease previously reported.This work was supported by the TelethonItaly [GrantGGP15041]; the Pierfranco and Luisa Mariani Foundation; the MRC7QQR [201572020] grant; the ERC advanced grant [FP77322424]; the NRJ Foundation7Institut de France; the E7Rare project GENOMIT. RL acknowledges generous financial support from Deutsche Forschungsgemeinschaft [SFB 987 and SPP 1927] and the LOEWE program of state Hessen

    Clinical and Biochemical Features in a Patient With Mitochondrial Fission Factor Gene Alteration

    Get PDF
    Mitochondrial Fission Factor (MFF) is part of a protein complex that promotes mitochondria and peroxisome fission. Hitherto, only 5 patients have been reported harboring mutations in MFF, all of them with the clinical features of a very early onset Leigh-like encephalopathy. We report on an 11-year-old boy with epileptic encephalopathy. He presented with neurological regression, epileptic myoclonic seizures, severe intellectual disability, microcephaly, tetraparesis, optic atrophy, and ophthalmoplegia. Brain MRI pattern was compatible with Leigh syndrome. NGS-based analysis of a gene panel for mitochondrial disorders revealed a homozygous c.892C>T (p. Arg298*) in the MFF gene. Fluorescence staining detected abnormal morphology of mitochondria and peroxisomes in fibroblasts from the patient; a strong reduction in MFF protein levels and the presence of truncated forms were observed. No biochemical alterations denoting peroxisomal disorders were found. As reported in other disorders affecting the dynamics of intracellular organelles, our patient showed clinical features suggesting both mitochondrial and peroxisomal impairment. High levels of lactate in our case suggested an involvement of the energetic metabolism but without clear respiratory chain deficiency, while biomarkers of peroxisomal dysfunction were normal. We confirm that MFF mutations are associated with epileptic encephalopathy with Leigh-like MRI pattern

    Compound heterozygous missense and deep intronic variants in NDUFAF6 unraveled by exome sequencing and mRNA analysis.

    Get PDF
    Biallelic mutations in NDUFAF6 have been identified as responsible for cases of autosomal recessive Leigh syndrome associated with mitochondrial complex I deficiency. Here we report two siblings and two unrelated subjects with Leigh syndrome, in which we found the same compound heterozygous missense (c.532G>C:p.A178P) and deep intronic (c.420+784C>T) variants in NDUFAF6. We demonstrated that the identified intronic variant creates an alternative splice site, leading to the production of an aberrant transcript. A detailed analysis of whole-exome sequencing data together with the functional validation based on mRNA analysis may reveal pathogenic variants even in non-exonic regions

    New genes and pathomechanisms in mitochondrial disorders unraveled by NGS technologies.

    Get PDF
    Next Generation Sequencing (NGS) technologies are revolutionizing the diagnostic screening for rare disease entities, including primary mitochondrial disorders, particularly those caused by nuclear gene defects. NGS approaches are able to identify the causative gene defects in small families and even single individuals, unsuitable for investigation by traditional linkage analysis. These technologies are contributing to fill the gap between mitochondrial disease cases defined on the basis of clinical, neuroimaging and biochemical readouts, which still outnumber by approximately 50% the cases for which a molecular-genetic diagnosis is attained. We have been using a combined, two-step strategy, based on targeted genes panel as a first NGS screening, followed by whole exome sequencing (WES) in still unsolved cases, to analyze a large cohort of subjects, that failed to show mutations in mtDNA and in ad hoc sets of specific nuclear genes, sequenced by the Sanger's method. Not only this approach has allowed us to reach molecular diagnosis in a significant fraction (20%) of these difficult cases, but it has also revealed unexpected and conceptually new findings. These include the possibility of marked variable penetrance of recessive mutations, the identification of large-scale DNA rearrangements, which explain spuriously heterozygous cases, and the association of mutations in known genes with unusual, previously unreported clinical phenotypes. Importantly, WES on selected cases has unraveled the presence of pathogenic mutations in genes encoding non-mitochondrial proteins (e.g. the transcription factor E4F1), an observation that further expands the intricate genetics of mitochondrial disease and suggests a new area of investigation in mitochondrial medicine. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi

    Primary brain calcification: an international study reporting novel variants and associated phenotypes.

    Get PDF
    Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with a wide spectrum of motor, cognitive, and neuropsychiatric symptoms. It is typically inherited as an autosomal-dominant trait with four causative genes identified so far: SLC20A2, PDGFRB, PDGFB, and XPR1. Our study aimed at screening the coding regions of these genes in a series of 177 unrelated probands that fulfilled the diagnostic criteria for primary brain calcification regardless of their family history. Sequence variants were classified as pathogenic, likely pathogenic, or of uncertain significance (VUS), based on the ACMG-AMP recommendations. We identified 45 probands (25.4%) carrying either pathogenic or likely pathogenic variants (n = 34, 19.2%) or VUS (n = 11, 6.2%). SLC20A2 provided the highest contribution (16.9%), followed by XPR1 and PDGFB (3.4% each), and PDGFRB (1.7%). A total of 81.5% of carriers were symptomatic and the most recurrent symptoms were parkinsonism, cognitive impairment, and psychiatric disturbances (52.3%, 40.9%, and 38.6% of symptomatic individuals, respectively), with a wide range of age at onset (from childhood to 81 years). While the pathogenic and likely pathogenic variants identified in this study can be used for genetic counseling, the VUS will require additional evidence, such as recurrence in unrelated patients, in order to be classified as pathogenic

    Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia

    Get PDF
    The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans

    Yeast as a model for mitochondrial aminoacyl-tRNA synthetase disorders: validation of mutations in NARS2 and WARS2

    No full text
    Aminoacyl-transfer ribonucleic acid synthetases (ARSs) catalyze the attachment of each amino acids to their cognate tRNAs. Mitochondrial ARSs (mtARSs), that ensure protein synthesis within mitochondrial compartment, are encoded by nuclear genes and imported in the organelle after translation in the cytosol. To date, thanks to the extensive use of next generation sequencing (NGS), an increasing number of variants in mtARS genes have been identified and associated with mitochondrial disease. The similarities between yeast and human mitochondrial translation machineries makes yeast a good model to evaluate the effect of variants in mtARSs genes in a quick and efficient way. We identified compound heterozygous missense WARS2 variants in a child with spastic paraparesis, tremor and ataxia and in another one with infantile parkinsonism, while compound heterozygous missense NARS2 variants were found in a baby with developmental delay, epilepsy and complex I deficiency. We have recently constructed two new yeast models to assess the functional consequences of novel mutations found in NARS2 and WARS2, encoding mitochondrial asparaginyl-tRNA (AsnRS) and tryptophanyl‐tRNA synthetases (TrpRS), respectively. Mitochondrial phenotypes such as oxidative growth, oxygen consumption rate (OCR) and Cox2 protein level were analyzed in yeast strains deleted in SLM5 and MSW1, the yeast orthologues of NARS2 and WARS2, and expressing the wild type or the mutant alleles both individually and in combination, confirming the pathogenicity of most the identified variants. Moreover, the beneficial effects deriving from supplementation of asparagine in the growth medium was investigated in the NARS2 yeast model. The results obtained suggest asparagine supplementation as a potential therapeutic approach
    corecore