3,780 research outputs found
The Preservation of Cued Recall in the Acute Mentally Fatigued State: A Randomised Crossover Study.
The objective of this study is to investigate the impact of acute mental fatigue on the recall of clinical information in the non-sleep-deprived state. Acute mental fatigue in the non-sleep-deprived subject is rarely studied in the medical workforce. Patient handover has been highlighted as an area of high risk especially in fatigued subjects. This study evaluates the deterioration in recall of clinical information over 2 h with cognitively demanding work in non-sleep-deprived subjects.A randomised crossover study involving twenty medical students assessed free (presentation) and cued (MCQ) recall of clinical case histories at 0 and 2 h under low and high cognitive load using the N-Back task. Acute mental fatigue was assessed through the Visual Analogue Scale, Stanford Scale and NASA-TLX Mental Workload Rating Scale.Free recall is significantly impaired by increased cognitive load (p < 0.05) with subjects demonstrating perceived mental fatigue during the high cognitive load assessment. There was no significant difference in the amount of information retrieved by cued recall under high and low cognitive load conditions (p = 1).This study demonstrates the loss of clinical information over a short time period involving a mentally fatiguing, high cognitive load task. Free recall for the handover of clinical information is unreliable. Memory cues maintain recall of clinical information. This study provides evidence towards the requirement for standardisation of a structured patient handover. The use of memory cues (involving recognition memory and cued recall methodology) would be beneficial in a handover checklist to aid recall of clinical information and supports evidence for their adoption into clinical practice
Abundance of Planktonic Virus-Like Particles in Lake Erie Subsurface Waters
Author Institution: Department of Biological Sciences, Kent State University - Trumbull Campus ; Department of Biological Sciences and Water Resources Research Institute, Kent State UniversityAbundance of virus-like particles (VLP) was determined in Lake Erie subsurface water. The relationship between VLP and the bacterial and phytoplankton communities were investigated. Viral and bacterial numbers were determined using nucleic acid stains and epifluorescent microscopy. Phytoplankton abundance was estimated by chlorophylls extraction. Viral abundance averaged 1.05 x 106 VLP/ml and the ratio of viral to bacterial number was less than 1.0 across most sampling sites and dates. Viral abundance was not correlated with either bacterial abundance or chlorophyll a concentration. Viral abundance was found to be most similar to other Great Lakes and marine systems and dissimilar to other freshwater systems
The International Pilot Study of Schizophrenia: five-year follow-up findings
A five-year follow-up of the patients initially included in the International Pilot Study of Schizophrenia was conducted in eight of the nine centres. Adequate information was obtained for 807 patients, representing 76% of the initial cohort. Clinical and social outcomes were significantly better for patients in Agra and Ibadan than for those in the centres in developed countries. In Cali, only social outcome was significantly bette
Designing optimal discrete-feedback thermodynamic engines
Feedback can be utilized to convert information into useful work, making it
an effective tool for increasing the performance of thermodynamic engines.
Using feedback reversibility as a guiding principle, we devise a method for
designing optimal feedback protocols for thermodynamic engines that extract all
the information gained during feedback as work. Our method is based on the
observation that in a feedback-reversible process the measurement and the
time-reversal of the ensuing protocol both prepare the system in the same
probabilistic state. We illustrate the utility of our method with two examples
of the multi-particle Szilard engine.Comment: 15 pages, 5 figures, submitted to New J. Phy
Too little, too late: reduced visual span and speed characterize pure alexia
Whether normal word reading includes a stage of visual processing selectively dedicated to word or letter recognition is highly debated. Characterizing pure alexia, a seemingly selective disorder of reading, has been central to this debate. Two main theories claim either that 1) Pure alexia is caused by damage to a reading specific brain region in the left fusiform gyrus or 2) Pure alexia results from a general visual impairment that may particularly affect simultaneous processing of multiple items. We tested these competing theories in 4 patients with pure alexia using sensitive psychophysical measures and mathematical modeling. Recognition of single letters and digits in the central visual field was impaired in all patients. Visual apprehension span was also reduced for both letters and digits in all patients. The only cortical region lesioned across all 4 patients was the left fusiform gyrus, indicating that this region subserves a function broader than letter or word identification. We suggest that a seemingly pure disorder of reading can arise due to a general reduction of visual speed and span, and explain why this has a disproportionate impact on word reading while recognition of other visual stimuli are less obviously affected
Stochastic Energetics of Quantum Transport
We examine the stochastic energetics of directed quantum transport due to
rectification of non-equilibrium thermal fluctuations. We calculate the quantum
efficiency of a ratchet device both in presence and absence of an external load
to characterize two quantifiers of efficiency. It has been shown that the
quantum current as well as efficiency in absence of load (Stokes efficiency) is
higher as compared to classical current and efficiency, respectively, at low
temperature. The conventional efficiency of the device in presence of load on
the other hand is higher for a classical system in contrast to its classical
counterpart. The maximum conventional efficiency being independent of the
nature of the bath and the potential remains the same for classical and quantum
systems.Comment: To be published in Phys. Rev.
Heat Transfer Operators Associated with Quantum Operations
Any quantum operation applied on a physical system is performed as a unitary
transformation on a larger extended system. If the extension used is a heat
bath in thermal equilibrium, the concomitant change in the state of the bath
necessarily implies a heat exchange with it. The dependence of the average heat
transferred to the bath on the initial state of the system can then be found
from the expectation value of a hermitian operator, which is named as the heat
transfer operator (HTO). The purpose of this article is the investigation of
the relation between the HTOs and the associated quantum operations. Since, any
given quantum operation on a system can be realized by different baths and
unitaries, many different HTOs are possible for each quantum operation. On the
other hand, there are also strong restrictions on the HTOs which arise from the
unitarity of the transformations. The most important of these is the Landauer
erasure principle. This article is concerned with the question of finding a
complete set of restrictions on the HTOs that are associated with a given
quantum operation. An answer to this question has been found only for a subset
of quantum operations. For erasure operations, these characterizations are
equivalent to the generalized Landauer erasure principle. For the case of
generic quantum operations however, it appears that the HTOs obey further
restrictions which cannot be obtained from the entropic restrictions of the
generalized Landauer erasure principle.Comment: A significant revision is made; 33 pages with 2 figure
- …
