125 research outputs found

    Decrease in ovalbumin-induced pulmonary allergic response by benzaldehyde but not acetaldehyde exposure in a guinea pig model

    Get PDF
    International audienceThe pulmonary effects of two environmentally relevant aldehydes were investigated in non-sensitized or ovalbumin (OA)-sensitized guinea pigs (GPs). Four-week-old male Hartley GPs, weighing about 400 g, were intraperitoneally injected with 1 ml of an NaCl solution containing 100 mug OA and 100 mg Al/(OH)(3). They were then exposed to either acetaldehyde (200 ppb) or benzaldehyde (500 ppb) (or 4 wk (6 h/d, 5 d/wk). At the end of exposure, GPs were challenged with an OA aerosol (0.1% in NaCl) and pulmonary functions were measured. The day after, guinea pigs were anesthetized and several endpoints related to inflammatory anti allergic responses were assessed in blood, whole-lung histology, and bronchoalveolar lavage (BAL). Sensitized nonexposed GPs showed bronchial hyperresponsiveness to OA and an increased number of eosinophils in blood and BAL, together with a rise in total protein and leukotrienes (LTB4 and LTC4/D-4/E-4) in BAL. In nonsensitized GPs, exposure to acetaldehyde or benzaldehyde did not induce any change in the tested parameters;, with the exception of irritation of the respiratory tract as detected by histology and an increased number of alveolar macrophages in animals exposed to acetaldehyde. In sensitized GPs, exposure to acetaldehyde induced a moderate irritation of the respiratory tract but no change in biological parameters linked to the inflammatory and allergic responses, In contrast, exposure to benzaldehyde induced a decrease both in OA-induced bronchoconstriction and in eosinophil and neutrophil numbers in BAL, an increase in the bronchodilatator mediator prostaglandin E-2 (PGE(2)) and a decrease in the bronchoconstrictor mediators LTC4/D-4/E-4. Further investigations are needed to determine if the attenuated response observed in sensitized GPs exposed to benzaldehyde is due to an alteration of the mechanism of sensitization or to a more direct effect on various mechanisms of the allergic response

    Extensive MRO CRISM Observations of 1.27 micron O2 Airglow in Mars Polar Night and Their Comparison to MRO MCS Temperature Profiles and LMD GCM Simulations

    Get PDF
    The Martian polar night distribution of 1.27 micron (0-0) band emission from O2 singlet delta [O2(1Delta(sub g))] is determined from an extensive set of Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectral Mapping (CRISM) limb scans observed over a wide range of Mars seasons, high latitudes, local times, and longitudes between 2009 and 2011. This polar nightglow reflects meridional transport and winter polar descent of atomic oxygen produced from CO2 photodissociation. A distinct peak in 1.27 micron nightglow appears prominently over 70-90NS latitudes at 40-60 km altitudes, as retrieved for over 100 vertical profiles of O2(1Delta(sub g)) 1.27 micron volume emission rates (VER). We also present the first detection of much (x80+/-20) weaker 1.58 micron (0-1) band emission from Mars O2(1Delta(sub g)). Co-located polar night CRISM O2(1Delta(sub g)) and Mars Climate Sounder (MCS) (McCleese et al., 2008) temperature profiles are compared to the same profiles as simulated by the Laboratoire de Mtorologie Dynamique (LMD) general circulation/photochemical model (e.g., Lefvre et al., 2004). Both standard and interactive aerosol LMD simulations (Madeleine et al., 2011a) underproduce CRISM O2(1Delta(sub g)) total emission rates by 40%, due to inadequate transport of atomic oxygen to the winter polar emission regions. Incorporation of interactive cloud radiative forcing on the global circulation leads to distinct but insufficient improvements in modeled polar O2(1Delta(sub g)) and temperatures. The observed and modeled anti-correlations between temperatures and 1.27 mm band VER reflect the temperature dependence of the rate coefficient for O2(1Delta(sub g)) formation, as provided in Roble (1995)

    Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter

    Get PDF
    The Martian mesosphere and thermosphere, the region above about 60 km, is not the primary target of the ExoMars 2016 mission but its Trace Gas Orbiter (TGO) can explore it and address many interesting issues, either in-situ during the aerobraking period or remotely during the regular mission. In the aerobraking phase TGO peeks into thermospheric densities and temperatures, in a broad range of latitudes and during a long continuous period. TGO carries two instruments designed for the detection of trace species, NOMAD and ACS, which will use the solar occultation technique. Their regular sounding at the terminator up to very high altitudes in many different molecular bands will represent the first time that an extensive and precise dataset of densities and hopefully temperatures are obtained at those altitudes and local times on Mars. But there are additional capabilities in TGO for studying the upper atmosphere of Mars, and we review them briefly. Our simulations suggest that airglow emissions from the UV to the IR might be observed outside the terminator. If eventually confirmed from orbit, they would supply new information about atmospheric dynamics and variability. However, their optimal exploitation requires a special spacecraft pointing, currently not considered in the regular operations but feasible in our opinion. We discuss the synergy between the TGO instruments, specially the wide spectral range achieved by combining them. We also encourage coordinated operations with other Mars-observing missions capable of supplying simultaneous measurements of its upper atmosphere

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Substitution of indium for chromium in TlIn5-xCrxSe8 crystal structure of TlIn4.811(5)Cr0.189(5)Se8

    No full text
    International audienceThe new thallium penta(indium/chromium) octaselenide, TlIn4.811(5)Cr0.189(5)Se8, has been synthesized by solid-state reaction. It crystallizes isotypically with TlIn5Se8 in the space group C2/m. Although the two Tl positions are disordered and only partially occupied, no Tl deficiency was observed. The insertion of chromium in the structure has been confirmed by EDS analysis. Chromium substitutes indium exclusively at one of three In sites, viz. at one of the positions with site symmetry 2/m (Wyckoff position 2a). In the crystal structure, edgesharing InSe6 octahedra, and (In,Cr)Se-6 octahedra and InSe4 tetrahedra make up two types of columns that are linked into a framework in which two different types of channels parallel to [010] are present. The Tl atoms are located in the larger of the channels, whereas the other, smaller channel remains unoccupied

    Turbulent Vertical Mixing in the Venus Cloud Layer

    No full text
    International audienceVenus hosts a global cloud layer with a convective layer that mixes momentum, heat, and chemical species and generates gravity waves. This vertical mixing is still not understood properly. We proposed to use convection-resolving models to study i
    • 

    corecore