3,459 research outputs found
Advanced Experimental Techniques for RF and DC Breakdown Research
Advanced experimental techniques are being developed to analyze RF and DC breakdown events. First measurements with a specially built spectrometer have been made with a DC spark setup [1] at CERN and will soon be installed in the CLIC 30GHz accelerating structure test stand to allow comparison between DC and RF breakdown phenomena. This spectrometer is able to measure the light intensity development during a breakdown in narrow wavelength bands in the visible and near infrared range. This will give information about the important aspects of the breakdown including chemical elements, temperature, plasma parameters and possibly precursors of a breakdown
Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution
The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB
Grain size limits derived from 3.6 {\mu}m and 4.5 {\mu}m coreshine
Recently discovered scattered light from molecular cloud cores in the
wavelength range 3-5 {\mu}m (called "coreshine") seems to indicate the presence
of grains with sizes above 0.5 {\mu}m. We aim to analyze 3.6 and 4.5 {\mu}m
coreshine from molecular cloud cores to probe the largest grains in the size
distribution. We analyzed dedicated deep Cycle 9 Spitzer IRAC observations in
the 3.6 and 4.5 {\mu}m bands for a sample of 10 low-mass cores. We used a new
modeling approach based on a combination of ratios of the two background- and
foreground-subtracted surface brightnesses and observed limits of the optical
depth. The dust grains were modeled as ice-coated silicate and carbonaceous
spheres. We discuss the impact of local radiation fields with a spectral slope
differing from what is seen in the DIRBE allsky maps. For the cores L260,
ecc806, L1262, L1517A, L1512, and L1544, the model reproduces the data with
maximum grain sizes around 0.9, 0.5, 0.65, 1.5, 0.6, and > 1.5 {\mu}m,
respectively. The maximum coreshine intensities of L1506C, L1439, and L1498 in
the individual bands require smaller maximum grain sizes than derived from the
observed distribution of band ratios. Additional isotropic local radiation
fields with a spectral shape differing from the DIRBE map shape do not remove
this discrepancy. In the case of Rho Oph 9, we were unable to reliably
disentangle the coreshine emission from background variations and the strong
local PAH emission. Considering surface brightness ratios in the 3.6 and 4.5
{\mu}m bands across a molecular cloud core is an effective method of
disentangling the complex interplay of structure and opacities when used in
combination with observed limits of the optical depth.Comment: 23 pages, 18 figures, accepted for publication in A&
Self diffusion in a system of interacting Langevin particles
The behavior of the self diffusion constant of Langevin particles interacting
via a pairwise interaction is considered. The diffusion constant is calculated
approximately within a perturbation theory in the potential strength about the
bare diffusion constant. It is shown how this expansion leads to a systematic
double expansion in the inverse temperature and the particle density
. The one-loop diagrams in this expansion can be summed exactly and we
show that this result is exact in the limit of small and
constant. The one-loop result can also be re-summed using a
semi-phenomenological renormalization group method which has proved useful in
the study of diffusion in random media. In certain cases the renormalization
group calculation predicts the existence of a diverging relaxation time
signalled by the vanishing of the diffusion constant -- possible forms of
divergence coming from this approximation are discussed. Finally, at a more
quantitative level, the results are compared with numerical simulations, in
two-dimensions, of particles interacting via a soft potential recently used to
model the interaction between coiled polymers.Comment: 12 pages, 8 figures .ep
Crossover from stationary to aging regime in glassy dynamics
We study the non-equilibrium dynamics of the spherical p-spin models in the
scaling regime near the plateau and derive the corresponding scaling functions
for the correlators. Our main result is that the matching between different
time regimes fixes the aging function in the aging regime to
. The exponent is related to the one giving the
length of the plateau. Interestingly is quickly very small when one
goes away from the dynamic transition temperature in the glassy phase. This
gives new light on the interpretation of experiments and simulations where
simple aging was found to be a reasonable but not perfect approximation, which
could be attributed to the existence of a small but non-zero stretching
exponent.Comment: 7 pages+2 figure
Metastability in zero-temperature dynamics: Statistics of attractors
The zero-temperature dynamics of simple models such as Ising ferromagnets
provides, as an alternative to the mean-field situation, interesting examples
of dynamical systems with many attractors (absorbing configurations, blocked
configurations, zero-temperature metastable states). After a brief review of
metastability in the mean-field ferromagnet and of the droplet picture, we
focus our attention onto zero-temperature single-spin-flip dynamics of
ferromagnetic Ising models. The situations leading to metastability are
characterized. The statistics and the spatial structure of the attractors thus
obtained are investigated, and put in perspective with uniform a priori
ensembles. We review the vast amount of exact results available in one
dimension, and present original results on the square and honeycomb lattices.Comment: 21 pages, 6 figures. To appear in special issue of JPCM on Granular
Matter edited by M. Nicodem
Results on the interaction of an intense bunched electron beam with resonant cavities at 35 GHz
The Two-Beam Accelerator (TBA) concept is currently being investigated both at Lawrence Berkeley National Laboratory (LBNL) and at CERN. As part of this program, a 7 MeV, 1-kA electron beam produced by the PIVAIR accelerator at CESTA has been used to power a free electron laser (FEL) amplifier at 35 GHz. At the FEL exit, the bunched electron beam is transported and focused into a resonant cavity built by the CLIC group at CERN. The power and frequency of the microwave output generated when the bunched beam traverses two different cavities are measured. (7 refs)
Pion radii in nonlocal chiral quark model
The electromagnetic radius of the charged pion and the transition radius of
the neutral pion are calculated in the framework of the nonlocal chiral quark
model. It is shown in this model that the contributions of vector mesons to the
pion radii are noticeably suppressed in comparison with a similar contribution
in the local Nambu--Jona-Lasinio model. The form-factor for the process
gamma*pi+pi- is calculated for the -1 GeV^2<q^2<1.6 GeV^2. Our results are in
satisfactory agreement with experimental data.Comment: 7 pages, 7 figure
Perturbation theory for the effective diffusion constant in a medium of random scatterer
We develop perturbation theory and physically motivated resummations of the
perturbation theory for the problem of a tracer particle diffusing in a random
media. The random media contains point scatterers of density uniformly
distributed through out the material. The tracer is a Langevin particle
subjected to the quenched random force generated by the scatterers. Via our
perturbative analysis we determine when the random potential can be
approximated by a Gaussian random potential. We also develop a self-similar
renormalisation group approach based on thinning out the scatterers, this
scheme is similar to that used with success for diffusion in Gaussian random
potentials and agrees with known exact results. To assess the accuracy of this
approximation scheme its predictions are confronted with results obtained by
numerical simulation.Comment: 22 pages, 6 figures, IOP (J. Phys. A. style
- …
