2,772 research outputs found

    Scaling Law in Carbon Nanotube Electromechanical Devices

    Full text link
    We report a method for probing electromechanical properties of multiwalled carbon nanotubes(CNTs). This method is based on AFM measurements on a doubly clamped suspended CNT electrostatically deflected by a gate electrode. We measure the maximum deflection as a function of the applied gate voltage. Data from different CNTs scale into an universal curve within the experimental accuracy, in agreement with a continuum model prediction. This method and the general validity of the scaling law constitute a very useful tool for designing actuators and in general conducting nanowire-based NEMS.Comment: 12 pages, 4 figures. To be published in Phys. Rev. Let

    Tapping Spin Glasses

    Full text link
    We consider a tapping dynamics, analogous to that in experiments on granular media, on spin glasses and ferromagnets on random thin graphs. Between taps, zero temperature single spin flip dynamics takes the system to a metastable state. Tapping, corresponds to flipping simultaneously any spin with probability pp. This dynamics leads to a stationary regime with a steady state energy E(p)E(p). We analytically solve this dynamics for the one dimensional ferromagnet and ±J\pm J spin glass. Numerical simulations for spin glasses and ferromagnets of higher connectivity are carried out, in particular we find a novel first order transition for the ferromagnetic systems.Comment: 5 pages, 3 figures, RevTe

    Lactation transcriptomics in the Australian marsupial, Macropus eugenii: transcript sequencing and quantification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lactation is an important aspect of mammalian biology and, amongst mammals, marsupials show one of the most complex lactation cycles. Marsupials, such as the tammar wallaby (<it>Macropus eugenii</it>) give birth to a relatively immature newborn and progressive changes in milk composition and milk production regulate early stage development of the young.</p> <p>Results</p> <p>In order to investigate gene expression in the marsupial mammary gland during lactation, a comprehensive set of cDNA libraries was derived from lactating tissues throughout the lactation cycle of the tammar wallaby. A total of 14,837 express sequence tags were produced by cDNA sequencing. Sequence analysis and sequence assembly were used to construct a comprehensive catalogue of mammary transcripts.</p> <p>Sequence data from pregnant and early or late lactating specific cDNA libraries and, data from early or late lactation massively parallel sequencing strategies were combined to analyse the variation of milk protein gene expression during the lactation cycle.</p> <p>Conclusion</p> <p>Results show a steady increase in expression of genes coding for secreted protein during the lactation cycle that is associated with high proportion of transcripts coding for milk proteins. In addition, genes involved in immune function, translation and energy or anabolic metabolism are expressed across the lactation cycle. A number of potential new milk proteins or mammary gland remodelling markers, including noncoding RNAs have been identified.</p

    Grain size limits derived from 3.6 {\mu}m and 4.5 {\mu}m coreshine

    Get PDF
    Recently discovered scattered light from molecular cloud cores in the wavelength range 3-5 {\mu}m (called "coreshine") seems to indicate the presence of grains with sizes above 0.5 {\mu}m. We aim to analyze 3.6 and 4.5 {\mu}m coreshine from molecular cloud cores to probe the largest grains in the size distribution. We analyzed dedicated deep Cycle 9 Spitzer IRAC observations in the 3.6 and 4.5 {\mu}m bands for a sample of 10 low-mass cores. We used a new modeling approach based on a combination of ratios of the two background- and foreground-subtracted surface brightnesses and observed limits of the optical depth. The dust grains were modeled as ice-coated silicate and carbonaceous spheres. We discuss the impact of local radiation fields with a spectral slope differing from what is seen in the DIRBE allsky maps. For the cores L260, ecc806, L1262, L1517A, L1512, and L1544, the model reproduces the data with maximum grain sizes around 0.9, 0.5, 0.65, 1.5, 0.6, and > 1.5 {\mu}m, respectively. The maximum coreshine intensities of L1506C, L1439, and L1498 in the individual bands require smaller maximum grain sizes than derived from the observed distribution of band ratios. Additional isotropic local radiation fields with a spectral shape differing from the DIRBE map shape do not remove this discrepancy. In the case of Rho Oph 9, we were unable to reliably disentangle the coreshine emission from background variations and the strong local PAH emission. Considering surface brightness ratios in the 3.6 and 4.5 {\mu}m bands across a molecular cloud core is an effective method of disentangling the complex interplay of structure and opacities when used in combination with observed limits of the optical depth.Comment: 23 pages, 18 figures, accepted for publication in A&

    Increased bacterial growth efficiency with environmental variability: results from DOC degradation by bacteria in pure culture experiments.

    Get PDF
    This paper assesses how considering variation in DOC availability and cell maintenance in bacterial models affects Bacterial Growth Efficiency (BGE) estimations. For this purpose, we conducted two biodegradation experiments simultaneously. In experiment one, a given amount of substrate was added to the culture at the start of the experiment whilst in experiment two, the same amount of substrate was added, but using periodic pulses over the time course of the experiment. Three bacterial models, with different levels of complexity, (the Monod, Marr-Pirt and the dynamic energy budget – DEB – models), were used and calibrated using the above experiments. BGE has been estimated using the experimental values obtained from discrete samples and from model generated data. Cell maintenance was derived experimentally, from respiration rate measurements. The results showed that the Monod model did not reproduce the experimental data accurately, whereas the Marr-Pirt and DEB models demonstrated a good level of reproducibility, probably because cell maintenance was built into their formula. Whatever estimation method was used, the BGE value was always higher in experiment two (the periodically pulsed substrate) as compared to the initially one-pulsed-substrate experiment. Moreover, BGE values estimated without considering cell maintenance (Monod model and empirical formula) were always smaller than BGE values obtained from models taking cell maintenance into account. Since BGE is commonly estimated using constant experimental systems and ignore maintenance, we conclude that these typical methods underestimate BGE values. On a larger scale, and for biogeochemical cycles, this would lead to the conclusion that, for a given DOC supply rate and a given DOC consumption rate, these BGE estimation methods overestimate the role of bacterioplankton as CO&lt;sub&gt;2&lt;/sub&gt; producers

    Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution

    Get PDF
    The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB

    Identification and transcript analysis of a novel wallaby (Macropus eugenii) basal-like breast cancer cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A wide variety of animal models have been used to study human breast cancer. Murine, feline and canine mammary tumor cell lines have been studied for several decades and have been shown to have numerous aspects in common with human breast cancer. It is clear that new comparative approaches to study cancer etiology are likely to be productive.</p> <p>Results</p> <p>A continuous line of breast carcinoma cells (WalBC) was established from a primary breast cancer that spontaneously arose in a female tammar wallaby (<it>Macropus eugenii</it>). The primary tumor was 1.5 cm<sup>3 </sup>and although large, did not appear to invade the stroma and lacked vimentin expression. The WalBC cell line was cultured from the primary tumor and passaged for 22 months. WalBC cells displayed an epithelial morphology when grown on plastic, were not EGF responsive, stained strongly for cyto-keratin and negatively for vimentin. WalBC cells were shown to be non-invasive within a Matrigel invasion assay and failed to produce tumors following transplantation into nude mice. Gene expression profiling of WalBC cells was performed using a cDNA microarray of nearly 10,000 mammary gland cDNA clones and compared to normal primary mammary cells and profiles of human breast cancer. Seventy-six genes were down-regulated and sixty-six genes were up-regulated in WalBC cells when compared to primary mammary cells. WalBC cells exhibited expression of known markers of basal invasive human breast cancers as well as increased KRT17, KRT 14 and KRT 19, DSP, s100A4, NDRG-1, ANXA1, TK1 and AQP3 gene expression and decreased gene expression of TIMP3, VIM and TAGLN. New targets for breast cancer treatment were identified such as ZONAB, PACSIN3, MRP8 and SUMO1 which have human homologues.</p> <p>Conclusion</p> <p>This study demonstrates how novel models of breast cancer can provide new fundamental clues regarding cancer etiology which may lead to new human treatments and therapies.</p

    Towards Risk Estimation in Automated Vehicles Using Fuzzy Logic

    Get PDF
    As vehicles get increasingly automated, they need to properly evaluate different situations and assess threats at run-time. In this scenario automated vehicles should be able to evaluate risks regarding a dynamic environment in order to take proper decisions and modulate their driving behavior accordingly. In order to avoid collisions, in this work we propose a risk estimator based on fuzzy logic which accounts for risk indicators regarding (1) the state of the driver, (2) the behavior of other vehicles and (3) the weather conditions. A scenario with two vehicles in a car-following situation was analyzed, where the main concern is to avoid rear-end collisions. The goal of the presented approach is to effectively estimate critical states and properly assess risk, based on the indicators chosen.This work was supported by the AMASS project (H2020- ECSEL) with grant agreement number 692474
    • …
    corecore