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Abstract. As vehicles get increasingly automated, they need to prop-
erly evaluate different situations and assess threats at run-time. In this
scenario automated vehicles should be able to evaluate risks regarding
a dynamic environment in order to take proper decisions and modulate
their driving behavior accordingly. In order to avoid collisions, in this
work we propose a risk estimator based on fuzzy logic which accounts
for risk indicators regarding (1) the state of the driver, (2) the behavior
of other vehicles and (3) the weather conditions. A scenario with two ve-
hicles in a car-following situation was analyzed, where the main concern
is to avoid rear-end collisions. The goal of the presented approach is to
effectively estimate critical states and properly assess risk, based on the
indicators chosen.

Keywords: automated vehicles, collision avoidance, fuzzy logic, time-
to-collision,driving behavior

1 Introduction

In a non-automated vehicle, risk in the environment is processed by the driver,
who intuitively analyzes several factors in a typical driving scenario, such as
the distance to the obstacles, the relative velocities to other vehicles, the road-
way conditions, the traffic rules, among other environment and vehicle variables.
Increasing vehicle automated capabilities requires their awareness of the envi-
ronment to grow accordingly, so that they are able to understand and process
different threat sources. A prompt and detection of dangerous situations, will
allow vehicles to react and avoid or mitigate accidents.

Nowadays, traffic accidents are responsible for up to 1.25M deaths and 50M
injuries worldwide annually according to the World Health Organization [17].
The main reason for most accidents in rural and urban roads is human error,
accounting for 94 percent of crashes according to the National Highway Traffic
Safety Administration[16] . One of the main reasons to move towards automated
vehicle technology is to improve safety by reducing the driver interaction with
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the system (taking the driver out of the loop). This transition is currently on-
going. Several functionality levels for the automated vehicle have been defined
depending on how much the driver presence is required. For example, the Society
of Automotive Engineers (SAE) has defined six levels of automation, depending
on the vehicle capability to perform driving tasks in different scenarios (modes)
[15].

Vehicular technology available in the market is on the verge of level 3 or ”con-
ditional automation”, which performs monitoring and driving under restrict cir-
cumstances, while level 4 technology is currently being tested by several compa-
nies. On the other hand, ”full automation” (level 5) describes a vehicle with full
capability in all environments under dynamic circumstances, taking the driver
out of the equation.

Automated vehicle technology is increasingly gaining attention in the indus-
try, Advanced Driver Assistance Systems (ADAS) have been under research for
several years. ADAS already provide level 2 automation in commercial vehicles,
and paved the path to level 3 automation. Nonetheless, the reliability of these
vehicles is limited, and still depends on the driver to take corrective actions
if something goes wrong. The trend towards highly automated vehicles, non-
reliant on driver intervention, makes vehicles fully responsible for all the driving
actions. Thus, serious liability issues for vehicle manufacturers arise if safety is
not thoroughly guaranteed.

This work develops a concept for online risk estimation, relying on safety
properties in a conditionally automated vehicle (level 3), to provide a compre-
hensive global knowledge of the state situation in the driving action. This risk
estimation will be studied for a rear end collision scenario, using a fuzzy logic
approach.

The outline of this paper is as follows. First, a background of risk in au-
tomated vehicles is presented. Then, a general risk assessment architecture is
proposed in section 2. In section 3 indicators of risk are selected and a fuzzy
logic approach is described. In section 4, a case study is proposed to test our
risk estimation. Finally conclusions are presented in sections 5.

2 Risk in Automated Vehicles

Risk is related to a multitude of scenarios where the likelihood of loss or liability
exists. For example, investment risk or project completion risk are associated
with performance and value. In a general sense, Levenson [12] defines risk as a
compound likelihood of components which may lead to a negative outcome.

The idea of risk in the automotive industry is associated with a vehicle in-
curring in a dangerous maneuver or scenario; a dangerous scenario is one that
increases the likelihood of an automotive accident. According to Lefèvre [11],
risk in automated vehicles is associated with the “likelihood and severity of the
damage that a vehicle of interest may suffer in the future”. In order to evaluate
and minimize risks, it is necessary to have accurate mathematical models of the
situation in order to predict threats.
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Most of the work regarding risk and threat assessment in the ITS (Intelligent
Transportation System) community has been focused on trajectory prediction
in order to detect collision states, which incurs huge computational cost [7].
The scenarios for collision avoidance vary greatly depending in the models used
for forecasting. According to [11], these strategies can be categorized as future
trajectory collision, binary collisions and probabilistic collision prediction. Some
indicators have been proposed to obtain a direct measure of the risk, such as
Time to collision (TTC), Time to lane change (TLC) mainly for lateral maneu-
vers, and Time to react (TTR) directly linked to the driver ability to take action
under a threat.

More recently, risk has been associated with a set of ”unusual events” as
Lefevre argues in [10]; i.e. detecting a deviation from a standard behavior for
a particular scenario. This concept of risk, based on an unexpected behavior,
follows the principle that when a system is unable to predict the future actions
of other participants, such actions may be regarded as risky or dangerous in a
specific set of traffic rules. As a matter of example, a vehicle passing a red light
is perceived as an increased risk for other vehicles in the scenario, given that
such maneuver is not expected.

Detecting these unusual events requires the definition of a nominal behavior,
which can be based on a series of rules. In [18] a context based risk detector was
developed from a set of safety rules aimed at preventing adverse weather con-
ditions and driver fatigue. In [14] Perez proposed an arbitration control which
evaluates some risk-related indicators in order to negotiate a level of author-
ity between the driver and system. This assessment is based on driver specific
indicators depending on the attention and drowsiness, as well as TTC. These
strategies aim at having a richer risk evaluation based not only on the physical
model of the vehicle, but also on the environmental and driver situation.

3 Risk Estimator

Dynamic threats, presented during run-time behavior, represent a challenge for
perception and decision systems. As a matter of example, the need for further
research in risk assessment strategies has come up lately in the literature of
automated driving as a mean to improve safety and provide reliability of its
systems.

The architecture for automated vehicles used in this work is shown in figure 1,
and is based on [9] where Lattarulo et al defined a framework to test controllers
in a simulated scenario. Our approach makes use of the decision, perception and
communication blocks. According to the architecture, the risk estimation com-
ponent takes place before the behavioral planner, as this is the main subsystem
responsible for action in the case of a high risk scenario. Also, our estimator
requires information from the world in order to make the assessment as well as
data from the perception component.

The perception component gets data from exteroceptive and proprioceptive
sensors. Thus, it provides the vehicle with a situation awareness regarding its
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Fig. 1. Risk assessment architecture

environment and its current state. Accuracy on this environmental description
depends heavily on the amount and type of sensors used. The environmental
description includes, but it is not limited to, defining and identifying other par-
ticipants, classifying them (e.g. vehicle, bus, cyclist, pedestrian), identifying road
signals (pedestrian crossings, semaphores, etc. ), climatological conditions (fog,
rain, snow and ice) among others.

The information of other vehicles states could also be provided by commu-
nication systems. Vehicle-to-vehicle communication (V2V) can greatly improve
safety for automated and non-automated vehicles. The NHTSA predicts imple-
menting V2V technology will diminish accident rates and greatly increased safety
in the road [4].

Our Runtime Risk Assessment framework is composed of three main tasks:
a) to recognize and properly assess threats, b) to predict risk situations regard-
ing previously identified threats and, finally, c) to propose a risk-diminishing
strategy; i.e. an action to avoid a risky situation. We consider a dangerous situ-
ation only regarding rear-end collisions in a single lane road. Based on this sce-
nario three main variables were selected; time to collision (TTC), visual driver
distraction (VDD) and weather conditions (WTHR). The scenario analyzed is
composed of two vehicles in a car-following situation.

3.1 Risk Estimation with Fuzzy Logic

For the task of emulating human driving actions fuzzy logic control has been
previously used in automated driving [13]. Since risk is inferred by the driver
in a non-automated vehicle, a fuzzy logic approach was chosen to mimic this
expertise. It allows extrapolating directly human knowledge in a set of rules to
asses a situation’s risk. For our system three main variables were selected, TTC,
a weather representation, and visual driver distraction (VDD), representing the
vehicle states, the driver and environment respectively as shown in figure 2.

TTC is the main indicator for risk in our fuzzy logic approach, due to its
direct relation with frontal collisions. This variable has been widely used in



Towards Risk Estimation in Automated Vehicles Using a Fuzzy System 5

Fig. 2. Fuzzy System representation

the literature as an indicator of danger for vehicles. It was first introduced by
Hayward [5] as an scalar measure of danger. TTC represents the time in the
future in which a collision would have happened if the vehicle maintains its
current speed and trajectory. This temporal indicator is critical if it is under 1.5
seconds [6] and it is generally consider safe when it is over 4 seconds. TTC is
calculated using equation 1, where Xi is the position of i-th vehicle and li its
length.

TTC =
Xi−1(t) −Xi(t) − li

Ẋi−1(t) − Ẋi(t)
(1)

Another input for the proposed fuzzy system is linked to the weather condi-
tions. We used a normalized variable called WTHR. Weather affects the risk in
a determined setup in multiple ways: it reduces the system (or driver) visibility
and its ability to properly control the vehicle, it can also change the road condi-
tions, diminishing the friction coefficient. In [8] a study to assess driver behavior
and associate it with weather conditions was conducted, risk perception was
associated with the ability of drivers to correctly assess the weather forecast.

Visibility and road condition, also change the behavior of other vehicles in a
driving situation, so, a driver might behave more conservatively not only due to
limited control, but also because other vehicles might exhibit the same limita-
tions, making them hard to predict. Since these factors are complex to model for
a vehicle, we used a simulated indicator, our WTHR indicator ranges from 0 to
1, where 0 represents optimal conditions for driving which could be translated
to a dry roadway and good visibility.

Driver attention has also been included in the evaluation. Recently, efforts
have been put into developing highly automated systems with drivers in the
loop as a transitioning phase for autonomous technology, while still providing
enhanced safety. One of the main challenges of such systems is being able to
evaluate correctly when to intervene in a maneuver in order to take control of
the vehicle from the driver. Other approaches manage the transition of author-
ity between the automation and the driver dynamically [2]. These strategies
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are called sharing control, and the process of assessing an automation level has
been labeled as arbitration control [3]. Our risk variable definition fits into such
framework and can be taken into account as an indicator for when to perform
such transition in a risky environment. In [1] a method to assess driver attention
based on an analysis of head position and orientation was conducted, a Visual
Driver Distraction (VDD) estimation was generated .To represent driver atten-
tion in our study an abstraction over VDD was used, our VDD indicator ranges
from [0,1], where 0 represents an optimal attention level (no distraction).

Our fuzzy logic approach defines three classes for the membership functions
of each input, as shown in figure 3. These membership functions define a set of
values related to each class, i.e. TTC is consider low below 2.5 seconds, and its
membership to this set increases until it tops at 1 second and reaches its max-
imum membership. Membership functions allow to define subsets which might
be overlapping, and different functions might be used, in our case (figure 3),
these are created with triangular and trapezoidal functions. Fuzzification re-
ceives TTC, WTHR and VDD values and converts them to a fuzzy value using
its membership functions. In our design we used a Mandani’s fuzzy inference
method, which allows for an if − then definition of our rules. The rule base pro-
vided in table 1, allows for a mapping of our inputs to our fuzzy output, or risk
estimation. These rules are base on human expertise and knowledge, and allow
for a soft mapping between inputs and risk states, which through defuzzificatio
process outputs a crisp value, in our case a centroid method was used. For our
fuzzy output membership function, five labels were designed to establish levels
of criticality; safe, low warning, warning, low critical and critical. Our fuzzy sys-
tem can be inspected as a function with three variables and a single output, a
surface plot for our risk estimation is presented in figure 8.
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Table 1. Fuzzy system rule definition.

TTC[s] VDD Weather Fuzzy Output

low - - critical

med low low low warning

med med low low critical

med high low critical

med low med warning

med med med low critical

med high med critical

med low high warning

med med high critical

med high high critical

high low low safe

high med low low warning

high high low warning

high low med low warning

high med med low warning

high high med warning

high low high low warning

high med high warning

high high high warning

4 Case Study

Our study focuses on the analysis of rear-end collisions between two vehicles in
a car-following scenario. The roadway used for our scenario was taken from a
map, and intentionally contains a roundabout with an intersection in order to
represent an actual urban street. This scenario is simple enough to test

the estimation made by our fuzzy logic approach. The main purpose of the
test was to validate the risk estimation using different inputs for our indicators.

The simulation environment contains two vehicles, which communicate their
states regarding velocity and position at all times. In a experimental scenario
these states could be inferred from the sensors of the perception system, or simply
shared through vehicle-to-vehicle (V2V) communication. The trailing vehicle
uses these states to compute the TTC, which is then fed to our fuzzy logic
estimator along with our simulated variables.

TTC was calculated using equation 1. The numerator represents the distance
to collision (DTC). In our simulation this distance was assumed to be rectilinear
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regardless of the geometry of the road. This decision simplified calculations, and
still portrays a worst case scenario, as this distance is always less or equal than
the real distance on the road, yielding to a minimum TTC.

WTHR and VDD do not impact the simulation environment, instead they
are only used by our risk estimation approach. In this way, they contribute indi-
rectly to the TTC as main indicator, with driver and environment information,
enhancing the estimation based on the set of rules established for our fuzzy logic
approach.

For each vehicle a speed profile was also created, which depends on the geom-
etry of the road and the maximum speed, acceleration and brake allowed. In this
case, both maximum acceleration and brake were maintained equal among both
vehicles, since our TTC calculation does not account for relative acceleration.
Instead, different maximum speeds were imposed for each vehicle, making the
leading vehicle slower to test the risk estimation in a impending collision. In or-
der to observe how the risk estimation evolved, no modification was carried out
by the system to avoid the collision, so the simulation continued until a collision
effectively occurred. On the contrary, in a real situation the driver would avoid
the collision by braking when he gets too close.
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4.1 Results

Simulations tested for 3 values of WTHR and 5 values of VDD. TTC was cal-
culated during simulation time using the speed and position of both vehicles.

TTC for the trailing vehicle in figure 7 shows several peaks before colli-
sion.These peaks coincide with changes in curvature of the road, where vehicles
diminish velocity and near miss situations occurred. This is observed five times
before colliding with the vehicle in front at around 44 seconds according to the
simulation.

In figure 8 all simulations are presented for different values of WTHR and
VDD. Since WTHR is linked with weather conditions in the environment, it is
expected to change less abruptly, though we are more concerned with grouping
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VDD changes. Similar to TTC five peaks can be observed for all simulations,
this was to be expected based on our rules.
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Fig. 8. Fuzzy output for different weather values

The first peak, after 15 seconds of simulation. coincides with the lead vehicle
entering the roundabout, the change in curvature makes the longitudinal con-
troller brake, reducing the distance between both vehicles and increasing relative
speed. When the trailing vehicle brakes to also enter the roundabout our TTC
calculation decrease quickly, leading to a nominal risk value. In Figure 6 this
behavior of increasing risk close to curves, can be observed in the map. Two
minor peaks can also be spotted inside the roundabout, both can be attributed
to slight changes in curvature which modify the speed profile of the vehicle. Ve-
hicles speed profile limits the maximum speed and acceleration of the vehicle as
shown in figure 5.
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The fourth peak observed corresponds to a near-miss scenario leaving the
roundabout, in this case inter-vehicle distance got below one meter, and TTC
dropped below 1.5 seconds. This situation resulted in a high estimation of risk
before leaving the roundabout as can be seen in figure 6. Finally our last peak
corresponds to a collision, which occurs during the intersection at the end of our
road scenario.

We can observe that geometry in the road had a direct impact over our
estimation, due to the speed profile the vehicle used, even though it was not
directly accounted in our estimation.

The emulated indicators helped to provide an enhanced risk estimation, by
accounting for driver attention and road/weather conditions. In our results the
WTHR indicator offsets our estimation without ever actually being the sole
responsible for a high criticality. This complies with our initial design for which
weather plays the role of making risky situations worse, by diminishing the
controlability of the vehicle or the accuracy of sensors.

VDD has a more aggressive effect over our estimation. Again this is in check
with the rules design for our fuzzy logic. Lower distraction levels correspond with
safe states, where an increase in VDD quickly offsets our risk estimation.

5 Conclusion

Risk estimation in automated vehicles is a key issue in order to take proper
decisions and adequate the driving behavior accordingly. This paper presents
an exploratory approach for risk estimation based on fuzzy logic, since it allows
embedding, in relatively easy way, the knowledge of human expertise into a
simple set of rules. The outcome of the risk estimator allows inferring the level
of risk taking into account (1) the state of the driver, (2) the behavior of other
vehicle and (3) the weather conditions.

This approach was analyzed in a longitudinal collision scenario for a car-
following maneuver in which two vehicles were involved. The rules designed
provided a fast inference of risk, which allow the system to estimate critical
levels when the prediction made by TTC was critical. In two events we observed
a non-critical risk due to the curvature of the road, which affects our prediction
by modifying the speed of the vehicles, these predictions were made critical when
aggregated with sub-optimal weather conditions and driver attention.

In the future, more complex scenarios will be considered as well as different
vehicle motion models. Assuming constant speed for TTC, limits the forecasting
ability of the indicator. Road definition also needs to be leveraged in order to
predict speed reductions when entering in curves with more precision, in order
to expect low values of TTC in such circumstances.
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M.Á.: Autonomous pedestrian collision avoidance using a fuzzy steering controller.
IEEE Transactions on Intelligent Transportation Systems 12(2), 390–401 (2011)
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