177 research outputs found

    Sequential choice of sharing rules in collective contests

    Get PDF
    Groups competing for a prize need to determine how to distribute it among their members in case of victory. Considering competition between two groups of different size, we show that the small group's sharing rule is a strategic complement to the large group's sharing rule in the sense that if the small group chooses a more meritocratic sharing rule, the large group wishes to choose a more meritocratic rule as well. On the contrary, the large group's sharing rule is a strategic substitute to the small group's sharing rule, hence the timing of choice is crucial. For sufficiently private prizes, a switch from a simultaneous choice to the small group being the leader consists in a Pareto improvement and reduces aggregate effort. On the contrary, when the large group is the leader, aggregate effort increases. As a result, the equilibrium timing is such that the small group chooses its sharing rule first. If the prize is not private enough, the small group retires from the competition and switching from a simultaneous to a sequential timing may reverse the results in terms of aggregate effort. The sequential timing also guarantees that the small group never outperforms the large one

    Chemical composition of nanoporous layer formed by electrochemical etching of p-type GaAs

    Get PDF
    Abstract : We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As2O3. Finally, a qualitative model is proposed to explain the porous As2O3 layer formation on p-GaAs substrate

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    A Randomized Controlled Trial of Chloroquine for the Treatment of Dengue in Vietnamese Adults

    Get PDF
    There is no available drug or vaccine against dengue, an acute viral disease that affects ∼50 million people annually in tropical and sub-tropical countries. Chloroquine (CQ), a cheap and well-tolerated drug, inhibits the growth of dengue viruses in the laboratory with concentrations achievable in the body. To measure the antiviral efficacy of CQ in dengue, we conducted a study involving 307 adults with suspected dengue. Patients received a 3-day oral dosage of placebo or CQ early in their illness. Unfortunately, we did not see an effect of CQ on the duration of viral infection. We did, however, observe that CQ had a modest anti-fever effect. In patients treated with CQ, we observed a trend towards a lower incidence of dengue hemorrhagic fever, a severe form of dengue. We did not find any differences in the immune response that can explain this trend. We also found more adverse events, primarily vomiting, with CQ. This trial provides valuable new information on how to perform trials of antiviral drugs for dengue

    Attenuated reovirus displays oncolysis with reduced host toxicity

    Get PDF
    Background: Although the naturally occurring reovirus causes only mild symptoms in humans, it shows considerable potential as an oncolytic agent because of its innate ability to target cancer cells. In immunocompromised hosts, however, wild-type reovirus can target healthy tissues, including heart, liver, pancreas and neural structures. Methods: We characterized an attenuated form of reovirus (AV) derived from a persistently infected cell line through sequence analysis, as well as western blot and in vitro transcription and translation techniques. To examine its pathogenesis and oncolytic potential, AV reovirus was tested on healthy embryonic stem cells, various non-transformed and transformed cell lines, and in severe combined immunodeficiency (SCID) mice with tumour xenografts. Results: Sequence analysis of AV reovirus revealed a premature STOP codon in its sigma 1 attachment protein. Western blot and in vitro translation confirmed the presence of a truncated ?1. In comparison to wild-type reovirus, AV reovirus did not kill healthy stem cells or induce black tail formation in SCID mice. However, it did retain its ability to target cancer cells and reduce tumour size. Conclusion: Despite containing a truncated attachment protein, AV reovirus still preferentially targets cancer cells, and compared with wild-type reovirus it shows reduced toxicity when administered to immunodeficient hosts, suggesting the potential use of AV reovirus in combination cancer therapy

    Amphipathic DNA polymers exhibit antiviral activity against systemic Murine Cytomegalovirus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphorothioated oligonucleotides (PS-ONs) have a sequence-independent, broad spectrum antiviral activity as amphipathic polymers (APs) and exhibit potent in vitro antiviral activity against a broad spectrum of herpesviruses: HSV-1, HSV-2, HCMV, VZV, EBV, and HHV-6A/B, and in vivo activity in a murine microbiocide model of genital HSV-2 infection. The activity of these agents against animal cytomegalovirus (CMV) infections in vitro and in vivo was therefore investigated.</p> <p>Results</p> <p>In vitro, a 40 mer degenerate AP (REP 9) inhibited both murine CMV (MCMV) and guinea pig CMV (GPCMV) with an IC<sub>50 </sub>of 0.045 μM and 0.16 μM, respectively, and a 40 mer poly C AP (REP 9C) inhibited MCMV with an IC<sub>50 </sub>of 0.05 μM. Addition of REP 9 to plaque assays during the first two hours of infection inhibited 78% of plaque formation whereas addition of REP 9 after 10 hours of infection did not significantly reduce the number of plaques, indicating that REP 9 antiviral activity against MCMV occurs at early times after infection. In a murine model of CMV infection, systemic treatment for 5 days significantly reduced virus replication in the spleens and livers of infected mice compared to saline-treated control mice. REP 9 and REP 9C were administered intraperitoneally for 5 consecutive days at 10 mg/kg, starting 2 days prior to MCMV infection. Splenomegaly was observed in infected mice treated with REP 9 but not in control mice or in REP 9 treated, uninfected mice, consistent with mild CpG-like activity. When REP 9C (which lacks CpG motifs) was compared to REP 9, it exhibited comparable antiviral activity as REP 9 but was not associated with splenomegaly. This suggests that the direct antiviral activity of APs is the predominant therapeutic mechanism <it>in vivo</it>. Moreover, REP 9C, which is acid stable, was effective when administered orally in combination with known permeation enhancers.</p> <p>Conclusion</p> <p>These studies indicate that APs exhibit potent, well tolerated antiviral activity against CMV infection in vivo and represent a new class of broad spectrum anti-herpetic agents.</p

    Dengue Virus Activates Polyreactive, Natural IgG B Cells after Primary and Secondary Infection

    Get PDF
    BACKGROUND: Dengue virus is transmitted by mosquitoes and has four serotypes. Cross-protection to other serotypes lasting for a few months is observed following infection with one serotype. There is evidence that low-affinity T and/or B cells from primary infections contribute to the severe syndromes often associated with secondary dengue infections. such pronounced immune-mediated enhancement suggests a dengue-specific pattern of immune cell activation. This study investigates the acute and early convalescent B cell response leading to the generation of cross-reactive and neutralizing antibodies following dengue infection. METHODOLOGY/PRINCIPAL FINDINGS: We assayed blood samples taken from dengue patients with primary or secondary infection during acute disease and convalescence and compared them to samples from patients presenting with non-dengue related fever. Dengue induced massive early plasmablast formation, which correlated with the appearance of polyclonal, cross-reactive IgG for both primary and secondary infection. Surprisingly, the contribution of IgG to the neutralizing titer 4-7 days after fever onset was more than 50% even after primary infection. CONCLUSIONS/SIGNIFICANCE: Poly-reactive and virus serotype cross-reactive IgG are an important component of the innate response in humans during both primary and secondary dengue infection, and "innate specificities" seem to constitute part of the adaptive response in dengue. While of potential importance for protection during secondary infection, cross-reactive B cells will also compete with highly neutralizing B cells and possibly interfere with their development

    The NS1 Glycoprotein Can Generate Dramatic Antibody-Enhanced Dengue Viral Replication in Normal Out-Bred Mice Resulting in Lethal Multi-Organ Disease

    Get PDF
    Antibody-enhanced replication (AER) of dengue type-2 virus (DENV-2) strains and production of antibody-enhanced disease (AED) was tested in out-bred mice. Polyclonal antibodies (PAbs) generated against the nonstructural-1 (NS1) glycoprotein candidate vaccine of the New Guinea-C (NG-C) or NSx strains reacted strongly and weakly with these antigens, respectively. These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E) glycoprotein of the DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcγ-receptor classes. Indeed, when these mice were challenged with a low dose (<0.5 LD50) of the DENV-2 NSx strain, but not the NG-C strain, they all generated dramatic and lethal DENV-2 AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS), displayed by diffuse alveolar damage (DAD) resulting from i) dramatic interstitial alveolar septa-thickening with mononuclear cells, ii) some hyperplasia of alveolar type-II pneumocytes, iii) copious intra-alveolar protein secretion, iv) some hyaline membrane-covered alveolar walls, and v) DENV-2 antigen-positive alveolar macrophages. These mice also developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis, apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal human “severe dengue” cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1 glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines, particularly against DENV strains that contain multiple mutations or genetic recombination within or between their DENV E and NS1 glycoprotein-encoding genes. The model provides potential for assessing DENV strain pathogenicity and anti-DENV therapies in normal mice
    corecore