198,911 research outputs found

    A paradigmatic flow for small-scale magnetohydrodynamics: properties of the ideal case and the collision of current sheets

    Get PDF
    We propose two sets of initial conditions for magnetohydrodynamics (MHD) in which both the velocity and the magnetic fields have spatial symmetries that are preserved by the dynamical equations as the system evolves. When implemented numerically they allow for substantial savings in CPU time and memory storage requirements for a given resolved scale separation. Basic properties of these Taylor-Green flows generalized to MHD are given, and the ideal non-dissipative case is studied up to the equivalent of 2048^3 grid points for one of these flows. The temporal evolution of the logarithmic decrements, delta, of the energy spectrum remains exponential at the highest spatial resolution considered, for which an acceleration is observed briefly before the grid resolution is reached. Up to the end of the exponential decay of delta, the behavior is consistent with a regular flow with no appearance of a singularity. The subsequent short acceleration in the formation of small magnetic scales can be associated with a near collision of two current sheets driven together by magnetic pressure. It leads to strong gradients with a fast rotation of the direction of the magnetic field, a feature also observed in the solar wind.Comment: 8 pages, 4 figure

    Uncertainty in epidemiology and health risk assessment

    Get PDF

    Langley Atmospheric Information Retrieval System (LAIRS): System description and user's guide

    Get PDF
    This document presents the user's guide, system description, and mathematical specifications for the Langley Atmospheric Information Retrieval System (LAIRS). It also includes a description of an optimal procedure for operational use of LAIRS. The primary objective of the LAIRS Program is to make it possible to obtain accurate estimates of atmospheric pressure, density, temperature, and winds along Shuttle reentry trajectories for use in postflight data reduction

    Synchronization transition of heterogeneously coupled oscillators on scale-free networks

    Full text link
    We investigate the synchronization transition of the modified Kuramoto model where the oscillators form a scale-free network with degree exponent λ\lambda. An oscillator of degree kik_i is coupled to its neighboring oscillators with asymmetric and degree-dependent coupling in the form of \couplingcoeff k_i^{\eta-1}. By invoking the mean-field approach, we determine the synchronization transition point JcJ_c, which is zero (finite) when η>λ−2\eta > \lambda-2 (η<λ−2\eta < \lambda-2). We find eight different synchronization transition behaviors depending on the values of η\eta and λ\lambda, and derive the critical exponents associated with the order parameter and the finite-size scaling in each case. The synchronization transition is also studied from the perspective of cluster formation of synchronized vertices. The cluster-size distribution and the largest cluster size as a function of the system size are derived for each case using the generating function technique. Our analytic results are confirmed by numerical simulations.Comment: 11 pages, 3 figures and two table
    • …
    corecore