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Abstract Environmental epidemiology and health

risk and impact assessment have long grappled with

problems of uncertainty in data and their relationships.

These uncertainties have become more challenging

because of the complex, systemic nature of many of

the risks. A clear framework defining and quantifying

uncertainty is needed. Three dimensions characterise

uncertainty: its nature, its location and its level. In

terms of its nature, uncertainty can be both intrinsic

and extrinsic. The former reflects the effects of

complexity, sparseness and nonlinearity; the latter

arises through inadequacies in available observational

data, measurement methods, sampling regimes and

models. Uncertainty occurs in three locations: con-

ceptualising the problem, analysis and communicating

the results. Most attention has been devoted to

characterising and quantifying the analysis—a wide

range of statistical methods has been developed to

estimate analytical uncertainties and model their

propagation through the analysis. In complex systemic

risks, larger uncertainties may be associated with

conceptualisation of the problem and communication

of the analytical results, both of which depend on the

perspective and viewpoint of the observer. These

imply using more participatory approaches to inves-

tigation, and more qualitative measures of uncertainty,

not only to define uncertainty more inclusively and

completely, but also to help those involved better

understand the nature of the uncertainties and their

practical implications.

Keywords Uncertainty � Conceptualising �
Epidemiology � Health risk

Introduction

Uncertainty is integral to every human endeavour,

and is reflected in the stochastic nature of most real-

world events. Attempts to identify, assess and control

uncertainties are therefore crucial in trying to under-

stand the world, or predict how it might behave—and

as such are basic components of all science. Equally,

uncertainty conditions our ability to manage the

world, either to reduce unwanted risks or to enhance

the human condition. Rarely, if ever, is it possible to

remove uncertainty entirely, though many disciplines

have developed a range of methods and tools for

identifying, characterising and estimating uncer-

tainty, and these provide the basis for at least

partial control. Problems of uncertainty nevertheless

tend to be most severe in interdisciplinary contexts.

One reason is that these areas often lie at the margins

of knowledge, where genuine gaps in data and

understanding exist. Another is that the issues dealt

with are typically complex and multifaceted. A third,

not insubstantial, reason is that the different
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disciplines involved often have different constructs of

uncertainty, and use different language to describe it,

so that ambiguities and misunderstandings arise in

trying to communicate information on uncertainty.

Problems of uncertainty are therefore especially

significant in areas of epidemiology and health risk or

impact assessment. Epidemiology is concerned with

understanding distributions of disease and its causes,

and as such seeks explanations not only in the

biological processes that act as proximal determi-

nants of human health, but also the more distal risk

factors arising from the environment and society.

Epidemiology thus needs to draw on a wide range of

disciplines, including medical, environmental, social

and mathematical sciences.

Health risk and impact assessment are more

difficult to define, if only because different concepts

and paradigms of each have emerged over recent

decades. In its most traditional form, risk assessment

has focused on trying to determine the presence or

absence (or in some cases degree) of risk to human

health associated with environmental or other hazards.

Covello and Merkhofer (1993), for example, define it

as ‘‘a systematic process for describing and quantify-

ing the risks associated with hazardous substances,

processes, actions, or events.’’ In this form, the focus

has been narrow, typically considering only one

hazard at a time, and paying little regard either to

how different exposures may combine to affect health,

or to ways in which human behaviours might affect

these risks. Renn (1998), amongst others, highlighted

the inadequacies of this approach. More recently,

therefore, attempts have been made to develop more

comprehensive approaches to risk assessment, under a

variety of different names and on the basis of

somewhat different principles. Amongst others, these

include integrated risk assessment (Bridges 2003;

Suter et al. 2005), strategic risk assessment (Slater

and Jones 1999) and comparative risk assessment

(Murray et al. 2005). In parallel, methods of health

impact assessment (Joffe and Mindell 2002; Kemm

2005) have also been developed. These differ from

risk assessment in two important ways: they are

specifically concerned with the health consequences

of policy or other interventions, and thus are focused

on change; and in this context they consider both

positive and negative effects of interventions, and try

to assess the balance of these different effects in order

to guide decision making. In addition, over recent

years, the practice of integrated assessment has

emerged as ‘‘an interdisciplinary and participatory

process of combining, interpreting and communicat-

ing knowledge from diverse scientific disciplines to

allow a better understanding of complex phenomena’’

(Rotmans and van Asselt 1996). Though as yet

applied in only a limited way to health issues, this

has been widely used to analyse global problems such

as climate change and long-range air pollution, and

has been adopted by the European Environment

Agency to underpin environmental assessment and

reporting (European Environment Agency 2005).

Despite these many differences in name and

approach, almost all forms of assessment have a

number of commonalities. One is their concern with

environmental effects on health (i.e. the effects of

environmental hazards and conditions, or of other

factors that operate via the environment); another is

their multidisciplinarity—their reliance on evidence

from toxicology, epidemiology, environmental sci-

ences and a wide range of attendant disciplines. A

third, crucial point of contact is the importance in all

forms of assessment of uncertainty. Indeed, in many

ways this has become a more serious concern as the

science of assessment has progressed, for whilst

methods of analysis and data sources have improved

on the one hand, the complexity of the problems

being addressed has grown on the other. In the

context of these modern, systemic risks (Renn and

Klinke 2006), therefore, assessment faces far more

difficult challenges, often involves the use and

linkage of sophisticated models, and provides the

opportunity for the development and propagation of

profound forms of uncertainty.

In the light of this, there is a continuing need to try

to establish a more coherent and shared understand-

ing of what uncertainty is, how it arises, how it can be

identified and assessed and what its implications are.

This paper endeavours to contribute to this under-

standing, in the specific context of geochemical

hazards and health. It draws on a number of sources:

a review of literature on epidemiology, assessment

and uncertainty over the last 10–15 years; thinking on

the issue of assessment and uncertainty in two

European Union (EU)-funded projects (INTARESE

and HEIMTSA); and discussions at a workshop

organised as part of the Natural Environment

Research Council (NERC)-funded MULTITUDE

project in Liverpool in June 2007. Based on these
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studies, it presents a framework for uncertainty in

environmental epidemiology and risk/health impact

assessment, describes and illustrates how uncertain-

ties may arise and propagate in the risk assessment

process and outlines ways in which the different types

of uncertainty may be specified and quantified.

A framework for uncertainty

At the most general level, uncertainty can perhaps

best be regarded as any departure from complete

determinism (Walker et al. 2003). Brown (2004)

equates it to ‘‘imperfect knowledge’’. As such, it has

many different facets, derives from a wide range of

sources and can be characterised in a variety of ways.

Amongst others, terms such as ignorance, ambiguity,

indeterminacy, variability, unpredictability, error and

unreliability are all often used as full or partial

synonyms. As a framework for describing uncer-

tainty, however, it is useful to recognise three main

dimensions or properties: its nature (what form it

takes), its location (where it arises) and its level (the

magnitude of the resulting uncertainty) (Walker et al.

2003).

Nature of uncertainty

Many different, though overlapping, classifications of

the nature of uncertainty have been proposed, often

emanating from different disciplines and thus reflect-

ing the specific types of knowledge and data, and

theoretical constructs, that pertain in each area. In

many of these, however, a fundamental delineation is

made between two broad types of uncertainty, albeit

under somewhat different names. On the one side is

the uncertainty that is intrinsic to the phenomena under

consideration; on the other, that which is extrinsic or

observational—i.e. a consequence of our inadequate

ability to describe, measure or understand the phe-

nomena concerned. Rotmans and van Asselt (2001a,

b) thus distinguish between variability and lack of

knowledge; Walker et al. (2003) use the terms ‘‘var-

iability uncertainty’’ and ‘‘epistemic uncertainty’’ for

the same two forms, respectively. Suter et al. (1987)

divide defined uncertainty (relating to the state of the

world) from undefined uncertainty (our underlying

ignorance). Regan et al. (2002) make a somewhat

different distinction between epistemological and

linguistic uncertainty—the former focusing on the

way things are perceived and measured, the latter on

how we communicate information about what we see.

Here, the terms intrinsic and extrinsic uncertainty

are used. The former refers to the inherent properties

of the system under consideration and can be seen to

derive from three main sources: randomness, sparse-

ness and nonlinearity. Beyond the quantum scale, true

randomness is surprisingly uncommon; most systems

show a considerable degree of pattern in both time

and space, though this is often masked by the inherent

complexities or lack of available data. Sparseness is

more common: extreme environmental events, such

as major floods or industrial accidents are, fortu-

nately, rare. In this situation, however, the system can

appear extremely unstable, for each occurrence

represents a major departure from the norm, and

patterns in their occurrence are difficult to detect

because of the small number of observable events set

within a dominating background of non-events.

Sparseness is especially important in relation to

binary phenomena such as health outcomes—and

most crucially so in the case of rare outcomes (e.g.

many cancers).

Nonlinearity is also pervasive, and arises for a wide

range of reasons. The multidimensionality of the

environment, for example, means that dispersion of

contaminants is intrinsically a nonlinear function of

both distance and time. The self-regulating nature of

processes, such as plant uptake of contaminants from

the soil, and the self-amplifying nature of many

biological processes (e.g. cancer formation), likewise

give rise to nonlinear responses. Inelasticity in

response may occur because of the buffering capacity

of the phenomena concerned (e.g. of soils to acidifi-

cation, or human organs to exposure to toxins),

leading to thresholds or marked curvature in the

observed relationships. In the case of health, interac-

tions between different risk factors may also occur,

causing so-called effect modification: the health risks

of exposure to radon, for example, are known to be

exacerbated in the presence of tobacco smoke,

apparently because the particulates generated by

smoking act as effective carriers for the radon and

its daughter products (Barros-Dios et al. 2002); elec-

tromagnetic fields (EMF) may act as an effect

modifier for exposure to particles, perhaps because

they encourage ionisation of fine particulates and thus

facilitate their deposition and retention in the airways
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(Henshaw 2002). In all these cases, the resulting

nonlinearity means that the system may appear to

show marked discontinuities in both time and space.

Extrinsic uncertainty relates to imprecision or

errors in the observational procedures used to analyse

the system. These may derive from every element of

the process, including the tools used for observation,

the manner in which they are deployed, and the

subsequent manipulation and use of the information

obtained. Amongst others, therefore, sources of

extrinsic uncertainty include the sampling design

used to collect data, measurement methods and

equipment, statistical methods and models, data

recording and transmission, and reading and inter-

pretation of the results.

In practice, intrinsic and extrinsic forms of uncer-

tainty are not wholly independent. As knowledge

about how any system is structured and behaves

improves, and as our tools for measuring its proper-

ties advance, so the system tends to become more

predictable and the degree of intrinsic uncertainty

appears to decline also. As such the distinction

between the two can become extremely tenuous.

Brown (2004) thus argues that uncertainty ‘‘emerges

through the interaction of mind and matter’’, and

continues: ‘‘… people may be uncertain about the

environment because: (1) it appears more complex

than our abstractions and simplifications imply

(complexity); (2) it is too variable for us to capture

uniquely (e.g. non-linear or chaotic); (3) it is too large

and interconnected for us to observe everything at

once, or too small to observe at all (scale); (4) it is too

opaque for us to observe (transparency) or (5) we do

not have the capacity to observe it (e.g. no instru-

ments)’’. On the one hand, therefore, in a highly

regular system, even imprecise measurements or

small samples may be sufficient to detect the

underlying pattern and make prediction possible. On

the other hand, where intrinsic uncertainty is large,

imprecision or biases in measurement or sampling

make pattern detection—and therefore prediction—

even more problematic. One example of this is the

so-called small-number problem which often affects

health data. Sparse events, when counted at a small-

area level (i.e. within small denominator popula-

tions), produce rates that are highly variable because

each case is rare and each occurrence causes a large

change in the observed rate. The noise-to-signal ratio

due to chance events is therefore high, and patterns

are difficult to detect without the benefit of large data

sets. In addition, the disease rates and patterns seen

may become highly sensitive to the choice of spatial

units used as the basis for the counts—the so-called

modifiable areal unit problem (MAUP; Openshaw

1984). In this case, changing from smaller to larger

census tracts, for example (Fig. 1), or from census

tracts to a regular grid, may result in marked changes

in the apparent spatial structure in the data. In Fig. 1,

the scale effect component of the MAUP has been

demonstrated, using data for Leeds, UK. The same

data has been aggregated and then subsequently

analysed for two different spatial scales from the UK

Fig. 1 Lung cancer rates at super output areas (SOA) (left) and ward (right) levels, in Leeds, UK
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census: super output areas (SOA) and wards. One can

readily see differences between the mapped scales in

Fig. 1: for example, relatively high rates of lung

cancer that emerge in the NE sector of the map at the

SOA level, but disappear entirely in the ward-level

analysis. We then investigated whether a further

analysis based on these two aggregations would

reveal variations. Taking the same lung cancer data,

and then correlating this with data on tobacco

expenditure in 2006 (from CACI), and the income

and education domains of the Index of Multiple

Deprivation 2004 (IMD 2004), revealed that, as the

geographical level of aggregation increased, the

relationships between the variables strengthened

(Table 1). These aspects of the MAUP illustrate

how study design can introduce a source of uncer-

tainty to any ensuing analysis.

Location of uncertainty

The location of uncertainty refers to where it arises in

the system under consideration, or, more strictly

within the portrayal of that system—what Walker

et al. (2003) refer to as the model complex. Different

ways may be proposed to characterise the locations

concerned, resulting in a somewhat confusing array of

terms—many of them, unfortunately, not well chosen.

The term model uncertainty, for example, has vari-

ously been used to define uncertainties associated with

the conceptual framing of the problem or issue, and

the quantitative properties of the physical, mathemat-

ical or statistical models used to analyse it (Walker

et al. 2003). In reality, which locations are most

relevant is likely to vary depending on the nature of

the system under consideration and the nature of the

enquiry. In general terms, however, it may be helpful

to define studies in terms of three key phases, each

representing different locations for uncertainty: con-

ceptualisation, analysis and communication.

Conceptual uncertainty

Conceptualisation represents the (usually initial)

framing of the study. In an epidemiological investi-

gation this is typically encapsulated in the hypothesis

to be tested, and is ideally based on some precon-

ceived theory or understanding of the aetiological

processes involved. In risk and impact assessment, it

comprises the specification of the risks or policy

question(s) to be analysed, and the conditions (e.g.

scenarios, study areas) under which this will be done.

Conceptualisation thus involves deciding where to

place the boundaries (conceptually, spatially and

temporally) of the analysis, what aspects to include

and which to ignore, and, fundamentally, the under-

lying model of the system under study—the key

relationships of interest and the processes that they

represent.

Of all sources of uncertainty, conceptual uncer-

tainty has the greatest potential impact due to the

variety of possible philosophical and epistemological

positions of the investigating researchers. In empiri-

cist science, pre-eminent in modern epidemiology,

exposure and risk assessment, the almost unchal-

lenged philosophical approach is that of the positivist

paradigm—unprejudiced observation; the separation

of ‘‘facts’’ from ‘‘values’’; and the emphasis on

verification to develop general laws. A Popperian

critique of empiricism, however, is that observations

themselves are theory dependent. Consider for a

moment our respective attitudes to quantitative and

qualitative methods. We often struggle to assign equal

weight to both types of method, due to our concep-

tions of what is ‘‘scientific knowledge’’, and ‘‘good

science’’. We have been trained to consider the

Kuhnian interpretation of ‘‘normal science’’ empiri-

cism as cumulative, free of values and interests and

thus it largely remains unquestioned and is indeed

considered a sign of disciplinary maturity—a single

dominant paradigm rather than a multiplicity of

competing perspectives. A community of scientists

is considered to view the world in a particular way. It

is this epistemological position itself that potentially

closes our minds to alternative perspectives, and thus

to acknowledge the scope for conceptual uncertainty.

The scope for uncertainty in conceptualisation is

large and its implications pervasive, for the way the

issue is conceived inevitably conditions the results of

the analysis. In assessing risks or health impacts, for

Table 1 Correlation coefficients for both super output areas

(SOA) and wards between lung cancer rates and tobacco

expenditure, income and education for Leeds, UK

Lung cancer

rate (SOA)

Lung cancer

rate (ward)

Tobacco expenditure 0.369 0.469

Income -0.443 -0.669

Education -0.499 -0.815
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example, excluding key sources or pathways of

exposure or important determinants of susceptibility

will mean that effects may be seriously underesti-

mated, no matter how detailed or reliable the

subsequent analysis. Similarly, poor specification of

the hazard (e.g. the critical source or agent of interest)

is likely to lead to substantial exposure misclassifi-

cation, diluting the power of an epidemiological study

and making it more difficult to detect associations with

health outcome. One such recent study, in a health and

social economic status context, investigated the spatial

implications of alternative socioeconomic status

(SES) covariate adjustments—the potential uncertain-

ties when worked through to the alternative risk

estimates are illuminating (Sabel et al 2007). Like-

wise, inadequate definition of the relevant health

outcomes may bias studies and limit the generalis-

ability of the results. It is, therefore, regrettable that

uncertainties associated with conceptualisation often

receive rather scant attention, especially in more

traditional and reductionist forms of epidemiology or

risk assessment, which usually focus on narrower,

quantitative aspects of the analysis.

Conceptual uncertainties arise in most studies of

real-world systems, if only because these systems

are invariably open, with poorly defined and porous

boundaries, and are often complex. Ambiguity thus

arises both about what factors to include in the study

and how to define them. For an analyst, working

alone and making the decisions in isolation, these

uncertainties may not be evident. They tend to

become apparent, however, when the results are

shared with others (whether with the referees of the

resulting epidemiological paper or the users of the

analysis). In both these cases, challenges may arise

regarding the inbuilt assumptions. Conceptual uncer-

tainty thus becomes an issue of asking the wrong

question. As this implies, one way of safeguarding

against these uncertainties is to frame studies more

collaboratively—in consultation with other scientists

(especially those who may have a different perspec-

tive on the problem) and stakeholders who have

interests in the results. While such consultations

may not eliminate conceptual uncertainties, they

should help to reveal them. On this basis, strategies

for dealing with the uncertainties may then be

devised: for example, by stating the assumptions

explicitly and thus specifying the limits of the study,

or by carrying out sensitivity analyses to explore the

possible effects of relaxing or changing the under-

lying assumptions.

Analytical uncertainty

As this indicates, conceptual ambiguity is often likely

to be a major source of uncertainty in epidemiolog-

ical studies or risk and impact assessments.

Analytical uncertainty, however, often attracts more

attention—to some degree, perhaps, because of the

so-called lamp-post effect: we study what we can

more easily see. Because they are part of the

analytical process, these sources of uncertainty are

more amenable to examination and quantification: for

example, by replicating studies, by testing and

validating the equipment and models, or by use of

statistical methods to model error propagation. The

sources of analytical uncertainty are as broad and

varied as the study designs and methods used: each

and every aspect of analysis is open to uncertainty.

Important sources include sampling, measurement

and data handling and processing.

Amongst these, sampling is often the most serious,

especially in the case of field-based studies. The

difficulties arise from the inherent complexity and

spatial and temporal variability of the environment

(and human populations). Against this background,

the challenge is not only to obtain reliable estimates

of average conditions across the study area or

population of interest, but to be able to represent

the variability of the phenomena concerned, i.e. to

provide locally (in time and space) representative

data. In terms of health, this is vital, for effects of

environment on health rarely, if ever, operate at the

aggregate level; instead, they are the result of

individual responses to personal exposures occurring

in specific locations and during specific time periods.

Failure to recognise or measure these specific inter-

actions leads to the so-called ecological fallacy—i.e.

the (potentially false) assumption that associations

observed at group level reflect (causal) relationships

operating at the individual level (Greenland and

Morgenstern 1989). Three consequences of this

fallacy merit special attention. First, because group-

level analysis is likely to ignore or underestimate the

effects of possible confounding factors (e.g. within-

group variations in socioeconomic status or lifestyle),

the observed associations may be biased, typically

(though not always) away from the null. Second,
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because the range of aggregated exposure estimates is

likely to be attenuated compared to those at individ-

ual level (through the simple process of averaging),

risks at the extremes of exposure (both high and low)

may be misrepresented. Third, because the differen-

tial effects between individuals cannot be observed,

the existence of subpopulations of susceptible people,

who may be affected at very low levels of exposure,

is likely to be missed. Together, these sources of

uncertainty make it extremely difficult to interpret

results from aggregate-level epidemiological studies,

and especially difficult to deduce causal relationships.

In the attempt to overcome these problems, epidemi-

ology has tended to turn away from studies using

aggregate data, wherever possible, and instead design

studies at individual level. Case–control studies, in

which health effects in an observed set of exposed

individuals are compared with those in a set of

unexposed (or less exposed) individuals, is one

approach. Cohort studies, in which a group of

individuals are followed over time, and their expo-

sures and health outcomes monitored, provides a

potentially more powerful (though also more costly)

design.

Problems of obtaining representative samples

nevertheless affect most studies, not least in relation

to exposure estimation. The problems arise because

of the cost of sampling and measurement, which

mean that, even in well-funded studies, a sufficient

number of measurements can rarely be made. These

problems apply as much to routine monitoring

systems, such as the air pollution networks main-

tained by national and municipal authorities, as they

do smaller, purpose-designed research studies: while

the investment in routine monitoring may be larger,

the need to cover large areas, maintain networks over

the long term and provide high levels of quality

assurance all limit the sampling density. Inherent in

most attempts at exposure assessment, therefore, is

some degree of trade-off between temporal and

spatial representivity. The choice is either to increase

the number of sampling sites but limit measurement

either to long-term averages or brief snapshots in

time, or to use fewer sites and monitor variations over

time. The choice should, in principle, be driven by

the hypothesis about what are the critical averaging

times for exposure. In practice, however, other

considerations often intervene. Most routine air

pollution monitoring networks, for example, are

governed by the prerogative of regulatory compli-

ance. They thus focus on obtaining time-series data

(for time intervals consistent with the regulations)

and are targeted at known or suspected pollution

hotspots. As such, they are likely to provide very

biased assessments of exposure—though this has not

stopped them being used for this purpose, almost as a

gold standard. Purpose-designed studies, on the other

hand, often have greater potential for personal

monitoring, but are usually severely time and

resource limited, and thus tend to take snapshot

measurements.

Given the limitations of both routine and purpose-

designed monitoring, many epidemiological studies

have turned to the use of models for exposure

assessment. Indeed, except in those few cases where

direct measurements are made on every individual in

a study, for the full exposure period of interest, it can

be justifiably argued that all epidemiological studies

involve modelling of exposures. Many, however, use

such simple (and naı̈ve) models—e.g. the assumption

that the monitored data can be simply extrapolated

across the study population—that they are not even

recognised as models. Risk and health impact

assessments likewise (and usually more explicitly)

rely heavily on modelling to extend monitored data to

the population at large, and to make predictions of

future exposures for relevant assessment scenarios

(e.g. different policy options).

Many different approaches to modelling are used

for these purposes, but two are perhaps of general

applicability. Process models aim to simulate the

real-world mechanisms of hazard propagation and

exposure; perhaps the most common examples are the

dispersion models often used to estimate air pollution

concentrations (Colvile and Briggs 2000). Similar

models are also available, however, for a wide range

of other hazards and media, including noise (Hei-

mann 2007; Ploysing 2000; van Maercke and

Defrance 2007), electromagnetic radiation (Kürner

2003), stream-water pollution (Rauch et al. 1998),

groundwater pollution (Refsgaard et al. 1999), floods

(Horritt and Bates 2002; Lamberti and Pilati 1996),

geological hazards (Atkinson and Somerville 1994;

Carey and Sparks 1986; Hurst and Turner 1999) and

vector-borne and communicable diseases (Anderson

and Garnett 2000; Rogers et al. 1988). Likewise,

demographic models have been developed to simu-

late both natural population dynamics and local and
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interregional migration (Cohen 1986; Lee and Tulja-

purkar 1994; Newell 1988; van Imhoff and Post

1998). Process models tend to be deterministic in that

they take no direct account of uncertainties in the

processes involved, though these may be ascertained

independently, for example by carrying out validation

studies or sensitivity analyses.

Statistical models, in contrast, attempt to simulate

the resulting distribution of exposures without direct

recourse to the underlying processes. They are also

typically stochastic in design, in that they make a

deliberate effort to quantify uncertainties. Two main

approaches to statistical modelling have evolved. The

traditional approach uses frequentist statistical meth-

ods, amongst which regression techniques are perhaps

the most commonly applied, especially in the analysis

of urban air pollution (Briggs 2007; Briggs et al.

1997, 2000; Jerrett et al. 2005). In more recent years,

however, Monte Carlo and Bayesian methods have

gained favour (Nieuwenhuijsen et al. 2006). Monte

Carlo simulation involves the repeated resampling

and analysis of distributions derived either from

observational data, or from preconceived assump-

tions, to model the frequency of events such as

exposures across the population. Bayesian analysis

takes this approach further, by enabling prior knowl-

edge, and nonquantitative forms of information such

as expert judgements, to be incorporated into the

analysis (Ramachandran 1999). In these ways, it can

provide more robust estimates of exposure, together

with more informative descriptions of uncertainties.

Where formal models cannot be developed for

exposure assessment, proxies may be used. In occupa-

tional epidemiology, for example, information on job

category is often employed as a surrogate for exposure

(Nieuwenhuijsen 2003); in studies of traffic-related air

pollution and health, distance from road or traffic

volume on the nearest road have frequently been used

(Huang and Batterman 2000). These, essentially,

represent a naı̈ve and implicit form of regression

model, in that they are based on the assumption of a

(usually linear) association between the proxy measure

and the exposure of concern. Unfortunately, this

assumption is not only often untested, but also in many

situations false (Briggs 2005, in press).

The uncertainties that arise in using models to

represent real-world systems are widely recognised

and have been extensively debated. Major sources

include inadequate understanding of the fundamental

processes or relationships being modelled, leading to

poor model parameterisation, and inadequacies in the

available input data. These problems are perhaps

most severe in trying to model human behaviours and

responses. One consequence of these uncertainties is

that models may display equifinality—in which

different representations of reality may match the

observed data more-or-less equally (Beven 2002,

2006; Beven and Freer 2001). In the case of risk and

impact assessments, moreover, many of these uncer-

tainties are exacerbated by the need to combine and

link models in order to represent the full system

between source and exposure. Many of the models

used are rather poorly validated, especially under the

heterogeneous conditions that characterise many real-

world systems, while marked nonlinearity may occur

at the interfaces between system compartments,

where natural regulators may act either to inhibit or

amplify transfers. As a consequence, error propaga-

tion may also be markedly nonlinear. Where relevant

data do exist, it may be possible be mitigate these

errors through the use of data assimilation techniques,

by which modelled estimates are continuously recal-

ibrated to match the observations before being passed

on as inputs to the next stage (Beven and Freer 2001;

Romanowicz and Young 2003). Unfortunately, in

many cases, data are sparse so the opportunities for

corrective measures of this type are limited. Inevita-

bly, therefore, there is the danger that modelled

estimates diverge progressively, and in some cases

abruptly, from reality as modelling proceeds from

source to exposure.

Spatial scale transitions pose similar problems. As

already emphasised, exposures to hazards take place

at the individual level. The hazards themselves,

however, may represent processes which span a

range of different scales. Thus, atmospheric particu-

late pollution represents the consequence of both

local and long-range sources acting in combination,

as well as the mediating effects of the immediate

living environment; heat waves, likewise, involve

processes operating at scales from the micro-envi-

ronmental to the global. Analysis of complex systems

therefore frequently requires the use of spatially

nested models. Most environmental models are scale

specific (Heuvelink 1998). They are typically based

on different modelling principles, and have been

validated under different conditions, with the aim of

maximising their individual, internal consistency.
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Applying models at other spatial scales therefore

carries the potential for substantial uncertainty.

Compatibility of the models across different geo-

graphic scales has also rarely been evaluated. As a

result, coupling of models may lead to a wide variety

of errors, including those of both omission and

commission. In the case of atmospheric particulates,

for example, it is evident that the interregional

component resulting from long-range transport does

not simply add to the locally derived particulate

fraction, but interacts with it (via nucleation, con-

densation and coagulation) to change the particle size

distribution and both mass and number concentration.

Simple summation of concentration estimates from

long-range and local dispersion models is therefore

likely to be erroneous.

Similar issues occur in relation to time scales.

Whilst short-term exposures, with the capability to

cause acute health effects, have traditionally attracted

most concern, it is now recognised that chronic

effects resulting from cumulative (including lifelong)

exposures are often a more important public health

problem. In reality, however, the two are not

independent: on the one hand, long-term exposures

may make people more sensitive to acute effects, for

example by lowering their susceptibility (Halfon and

Hochstein 2002, Lynch and Smith 2005); on the other

hand short-term exposures at critical life stages

(especially pre- or neonatal) may have lifelong

effects (Law and Shiell 1996; Phillips et al. 2000).

As a result, exposure modelling often has to span

different time scales in order to obtain estimates of

their combined effects. In doing so, questions clearly

arise about the relevant exposure windows and

metrics, and about how to integrate them realistically.

This is compounded, particularly (though not

uniquely) for long-term exposure, by the problem of

case migration, which can result in severe mis-

estimation of exposures for individual cases.

In the context of risk and health impact assess-

ment, an additional and specific source of temporal

uncertainty arises, namely in defining the time

window of exposure in a way that ensures that the

full time series of relevant exposures and effects are

taken into account. Ideally, this is done by running

models for the full lifecycle of the risks or policy

interventions—from their initial introduction,

through the intervening period of adaptation, to the

period of new steady state and thence until the effects

ultimately cease. Any other analysis involves some

degree of bias. In practice, this is almost impossible

to do. Uncertainties inevitably arise about how long

the new situation will be maintained: indeed a

common problem with many policy interventions is

that they are far more temporary than anticipated, so

while the setup costs (which usually occur early in

the lifecycle) are paid in full, there is inadequate time

to accrue the full benefits. The length of the period of

adaptation may also be uncertain—and in many

systems a period of static equilibrium is never

reached, so change is almost continuous. Issues of

latency likewise arise, most especially in relation to

congenital or reproductive disorders which may have

lifetime or even intergenerational effects.

In terms of the implications of these various

sources of uncertainty for the results of any analysis,

a distinction needs to be made between differential

and nondifferential effects. A common assumption in

epidemiology has been that uncertainties in exposure

assessment are nondifferential, in that they are not

biased towards cases or controls (or towards specific

parts of the distribution of disease rates). As such, they

should act to reduce the statistical power to detect any

association between exposure and health outcome, but

should not bias the risk estimates (e.g. the slope of the

exposure–response function). For this reason, uncer-

tainties in exposure estimation have often received

less attention than other uncertainties, which are

considered more likely to be systematic in their effect,

such as confounding by socioeconomic factors. The

extent to which this assumption is true has been the

subject of occasional, though as yet not exhaustive,

debate (Blair et al. 2007). Certainly there are situa-

tions in which systematic errors in exposure

estimation are possible—and indeed likely. Detection

limits of monitoring equipment, for example, mean

that lower level exposures are likely to be systemat-

ically underestimated; dispersion modelling

techniques are liable to under- rather than overesti-

mate exposures because they often ignore important

emission sources (e.g. long-range contributions from

outside the study area); use of distance from source as

a proxy for exposure may overestimate exposures at

distant, compared with proximal, locations because it

ignores the nonlinear (e.g. inverse square) distance

decay patterns that actually exist.

In the context of risk and impact assessment,

another important source of analytical uncertainty
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occurs in terms of the associations between exposure

and health effect. Whereas epidemiological studies

are generally concerned with trying to elucidate these

relationships, risk and impact assessment rely on

existing exposure–response or dose–response func-

tions to translate estimates of exposure into estimates

of health effect. These functions are, however, subject

to a wide variety of uncertainties. To some degree,

these uncertainties are explicit in the reported asso-

ciations (typically as confidence limits around the

point estimates of relative risk, excess risk or odds

ratios). Less obvious, are the uncertainties inherent in

trying to obtain best estimates from the (often diverse)

published data, for a specific assessment. Differences

in the reported functions, for example, occur because

of many, often hidden differences in study design—in

the specific nature of the hazards investigated, in the

exposure metrics and models, in the size and charac-

teristics of the study population, in the statistical and

other methods used for analysis and in the character-

isation and reporting of the health outcomes. Different

studies also differ in terms of their reliability and

statistical power, so not all reported exposure–

response functions can be treated as equal. In addition,

publication biases tend to favour reporting of positive

findings. Using a simple average of the reported

estimates is thus likely to be misleading. Taking

results from the most local study, on the grounds that

this will best represent the conditions and population

in the study area, might seem more appropriate, but

places reliance on a single study, which on its own has

limited statistical power. Combining data from dif-

ferent studies to derive exposure–response functions

for specific applications is thus fraught with difficul-

ties. Pooled analyses, in which the data themselves are

combined and reanalysed, is often regarded as the

optimum approach, but is not always feasible due to

difficulties of access to the relevant data (or summary

statistics) and the resource implications. Systematic

reviews, selecting and weighting findings from dif-

ferent studies on the basis of clear, predefined criteria,

may be more practicable but again need to based on

clear selection criteria.

In terms of impact assessments, also, the computed

effects of any policy or other intervention need to be

translated into estimates of impact—e.g. in terms of

changes in mortality, morbidity or some measure of

the overall burden of disease. Such calculations

depend on knowing the background disease or

mortality rates for the diseases of interest. These,

too, often involve uncertainties, which vary over both

space and time, due to differences in referral

practices, diagnosis or reporting; commonly, for

example, the registries that collect data on notifiable

diseases such as birth defects or cancers vary in their

efficiency, creating marked (but spurious) differences

in reported disease rates (Baron and Weiderpass

2000). Estimates of the overall disease burden also

depend on being able to combine different health

outcomes into a single metric of health status. These

need to reflect differences in both the duration and

severity of the diseases, as well as their prevalence.

Amongst others, metrics such as disability-adjusted

life years (DALYs), quality-adjusted life years or

monetary measures have been used. Each of them

suffers from uncertainties in the way in which

different health outcomes are weighted in terms of

their severity (Anand and Hanson 1997; Barker and

Green 1996; Edejer et al. 2003; Gold et al. 2002). For

diseases with long-term consequences, or which have

delayed effects, problems also arise in weighting (i.e.

discounting) future compared with immediate effects.

Communicational uncertainties

The final stage of risk and impact assessment

comprises communication of the results. The way in

which this is done varies greatly, depending on the

nature of the problem, the roles of those involved and

perceptions of the needs of the participants. Many of

these participants are inevitably nonspecialists, and as

such are likely to have difficulties in dealing with the

complex, and often jargonised, information that

emerges from epidemiological studies or risk assess-

ments. For this reason, scientists are commonly

exhorted to use simpler terms or analogies to

communicate their findings. In many cases, also,

results of risk or impact assessments are presented in

the form of indicators: simplified representations (i.e.

signals) of the key messages that need to be imparted.

Constructing meaningful indicators, however, is

extremely challenging, for simplification inevitably

comes at the cost of loss of information. Many

indicators and analogies thus imply approximation

and ambiguity, and in many cases they may bias the

knowledge that is transmitted.

As already noted, risk communication is also not

merely a matter of telling stakeholders what the risks
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or impacts are; it implies a much more interpretive

process, in which the meaning and validity of the

results can be considered, and their implications

discussed. In practice, this is rarely achievable

through a post hoc presentation of, and discussion

about, the results of the analysis. Indeed, in many

situations this is likely to encourage suspicion or

hostility amongst the recipients, who may rightly feel

that they are being treated as a passive audience

rather than real stakeholders in the risks. Since one of

the aims of risk communication is to gain support for

whatever actions are necessary, and to promote an

appropriate collective response from those involved,

such attitudes are likely to prove counterproductive.

If communication is to be effective, therefore, it

needs to be a far more equal and participatory

process. If stakeholders are to bring their own

interests and experience to bear on the analysis, it

also needs to start early in the process—at the stage

of issue framing.

As with all discourse, risk communication and

stakeholder participation is fraught with uncertain-

ties. These arise on both sides of the discourse: in the

originator’s understanding of the issue, and their

access to relevant words or symbols to represent it,

and in the receiver’s own intelligence, education,

experience, imagination and linguistic or visual

capabilities. The dilemma, with particular relevance

to uncertainty, is captured in the oft quoted (and

misunderstood):

‘‘… as we know, there are known knowns; there

are things we know we know. We also know

there are known unknowns; that is to say we

know there are some things we do not know.

But there are also unknown unknowns—the

ones we don’t know we don’t know.’’ Donald

Rumsfeld (former US Defense Secretary) 12th

February 2002

Differences in technical knowledge, compounded

in many cases by the jargon or specialist terms

involved, often exacerbate this problem. Distrust, or

the sense of powerlessness, may also bias people’s

interpretations, and make it even more difficult to

establish consensus across the stakeholders involved.

The resulting uncertainties are, by definition,

difficult to identify or assess, because they are

invariably implicit and cannot usually be tested

against independent observations. At best they

emerge as a mismatch between how people behave

in response to the information and how they might

have been expected to respond. In most cases,

therefore, there is no real substitute for a deeper

discourse if real understanding is to be achieved. This

needs to use a range of different methods, both to

reinforce understanding by trying to minimise the

ambiguities inherent in any specific mode, and to deal

with the different levels of expertise, and different

preconceptions and needs, of different stakeholders.

An important rule of risk communication is thus that

one mode of communication is rarely sufficient. Use

of multiple modes, however, requires that these are

consistent, if confusion is to be avoided. All these

problems are further compounded by the multitude of

stakeholders who may have interests in many situa-

tions, especially those which are complex and

systemic in nature. Indeed, in these situations, even

defining stakeholders can be problematic (Briggs and

Stern 2007). If it is to be effective, therefore, risk

communication is by necessity a time-consuming

process. It also has to be planned well in advance. It

is too late to try to identify, contact and assemble the

relevant stakeholders after a problem has emerged.

Instead, organisations with responsibility for risk

governance need to build up links with their constit-

uencies on a long-term basis.

Magnitude of uncertainty

Whilst knowledge about the location and nature of

uncertainties in epidemiological analyses or risk and

impact assessments is clearly valuable, ultimately the

main concern is with the level or magnitude of the

uncertainties. This implies the ability both to quantify

and communicate the uncertainty (in addition to the

risks to which they relate).

In order to provide a general framework for

describing levels of uncertainty, Walker et al.

(2003) present a spectrum from full determinism

(no uncertainty) to total ignorance. Within this, so-

called statistical uncertainty is seen to arise where

some degree of quantification of the system is

possible, such that the probability of different

outcomes can be assessed. Potential errors are thus

definable at least stochastically, and traditional sta-

tistical tools, such as confidence intervals, can be

used. In situations where the outcomes can be

defined, but their probability of occurrence is
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unknown, the term scenario uncertainty is used

(somewhat unfortunately, because the uncertainties

do not necessarily originate in the definition or

modelling of the scenario). In this case, uncertainties

are often represented by providing best- and worst-

case estimates (or upper and lower projections).

These are inherently less informative than confidence

intervals because they tell nothing about the proba-

bility distributions involved. Beyond this, Walker

et al. (2003) define recognised ignorance as the state

in which the potential for an effect is known, but

neither the direction nor probability of the effect can

be assessed because the underlying mechanisms and

relationships are not understood. Total ignorance

relates to the condition of not even knowing what we

do not know, implying that the system is totally

indeterminate (and thus appears to behave randomly).

This classification of levels of uncertainty has

considerable value by drawing attention to the

epistemological context within which knowledge

exists. As a basis for communicating information on

uncertainty, however, it is clearly limited. For this,

more normative (though also flexible and imagina-

tive) techniques are required. Where they are

possible, quantitative measures, such as confidence

intervals or probability statements, are obviously

useful in this respect. Crude, aggregate measures of

uncertainty, however, can hide the fact that levels of

uncertainty often vary across the study area or

population—for example, because of differences in

sample density or the quality of the input data to

models. In this context, mapping of uncertainties can

be informative. With the use of geographic informa-

tion systems, interactive mapping is now possible.

Pebesma et al. (2007), for example, describe a system

developed in the Aguilla software, which enables

interactive interrogation of uncertainties by, inter

alia, passing a cursor over the map and extracting

information on the probability distribution at each

location, or defining confidence limits as thresholds

for mapping (e.g. showing only areas that exceed a

specified confidence limit).

Where full quantification of the level of uncer-

tainty is not feasible, more qualitative methods may

still provide considerable insight. One approach is to

use Likert-type scales to score different types or

sources of uncertainty on a range from negligible to

serious (or overwhelming). Another is to rank sources

of uncertainty relative to each other, or to a well-

known and defined reference phenomenon, such as

the daily weather forecast. Diagrammatic measures,

such as simple bubble graphs or spider diagrams, can

similarly be used to convey broad qualitative infor-

mation about uncertainty to lay users. In the same

way, it can be helpful to construct system diagrams to

represent the factors and relationships considered in

the analysis, and to attribute this (e.g. via colours or

variations in line thickness) to indicate relative levels

of uncertainty. Narratives, too, can be powerful

means to convey and discuss uncertainties, not just

in a static descriptive sense as an attribute of the

result of the analysis, but much more informatively

by exploring how the uncertainties arose and their

potential implications. Whatever approach is used, it

is important to bear one thing in mind: the purpose of

measuring and reporting uncertainty in epidemiology

or risk assessment is to aid understanding of the

phenomena concerned, and to improve decision

making. The needs, capabilities and perceptions of

the users are thus crucial both in defining what

aspects of uncertainty matter, and to what degree, and

in determining how it can most effectively be

described and reported.

Conclusions

In recent years it has become common to emphasise

the need to understand and report uncertainty much

more systematically in epidemiological studies and in

assessments of risk or health impact. Methods to

achieve this have, nevertheless, been slow to emerge.

Most attention to date has also focused on statistical

techniques for modelling the propagation of uncer-

tainties, and for describing their magnitude. Deeper

consideration suggests that uncertainty is much more

than a statistical issue: it relates also to the way we

perceive, interact with and use the world. Purely

statistical approaches to uncertainty analysis also tend

to exclude the many situations in which quantification

is either infeasible or inappropriate. Equally, the

reification of uncertainties by statistical means may in

some cases make the issue of uncertainty less clear,

rather than more transparent, for many users. Uncer-

tainty analysis thus needs to be seen as a much more

participatory and formative activity—one that perme-

ates the whole process of investigation or assessment

from initial issue framing to ultimate interpretation
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and exploitation of the results. By the same token, it

also needs to be regarded as a participatory process.

This is essential not only in order to help those

involved better understand the uncertainties, but also

because uncertainty only has meaning in relation to

the issue and the users concerned. High levels of

uncertainty (in a statistical sense) may matter little, for

example, if the system under consideration is largely

resilient to influence, or if the effects of any

intervention offer negligible benefits and carry little

cost. On the other hand, even minute degrees of

uncertainty can be devastating in tightly engineered

systems and where consequences of error are large (or

are perceived to be so). Uncertainty thus needs to be

seen as much more than an attribute of real-world

systems or of our analytical methods. Crucially and

fundamentally it is a social phenomenon, tied up with

the perceptions, expectations, needs, behaviours and

well-being of those who have a stake in the associated

risks. Ultimately, therefore, uncertainty belongs to the

user, not to the analyst.
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