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Abstract

We present lattice calculations for the ground state energies of tritium, helium-3, helium-4,

lithium-6, and carbon-12 nuclei. Our results were previously summarized in a letter publication.

This paper provides full details of the calculations. We include isospin-breaking, Coulomb effects,

and interactions up to next-to-next-to-leading order in chiral effective field theory.
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I. INTRODUCTION

Lattice effective field theory combines the theoretical framework of effective field theory

with numerical lattice methods. In contrast with most other ab initio methods, systematic

errors are all introduced at the beginning when defining the truncated low-energy effective

theory. The errors can be clearly identified as either missing operators in the lattice action,

finite volume effects, or errors from finite Euclidean-time extrapolation. Future studies

can build upon existing calculations in a straightforward manner by including the missing

operators, increasing the volume, or improving the Euclidean-time extrapolation.

Lattice effective field theory has been used to study nuclear matter [1] and neutron matter

[2–7]. The method has also been applied to nuclei with A ≤ 4 using effective field theory

with and without pions [8–10]. A review of lattice effective field theory calculations can be

found in Ref. [11]. Reviews of chiral effective field theory can be found in Ref. [12–15].

In this paper we present the first lattice results for lithium-6 and carbon-12 using chiral

effective field theory. We also present the first lattice calculations to include isospin-breaking

and Coulomb effects. Our results were previously summarized in a letter publication [16].

This paper provides full details of the calculations. We begin by describing the lattice

interactions in chiral effective field theory appearing at leading order, next-to-leading order,

and next-to-next-to-leading order. This is followed by a discussion of isospin-breaking and

Coulomb interactions. After this all unknown operator coefficients are fit using low-energy

scattering data. We then compute the energy splitting between the triton and helium-3. We

discuss the auxiliary-field Monte Carlo projection method and an approximate universality of

contributions from higher-order interactions in systems with four or more nucleons. This is

followed by lattice results for the ground state energy of helium-4, lithium-6, and carbon-12.

II. LEADING ORDER

The low-energy expansion in effective field theory counts powers of the ratio Q/Λ. Q

is the momentum scale associated with the mass of the pion or external nucleon momenta,

and Λ is the momentum scale at which the effective theory breaks down. At leading order

(LO) in the Weinberg power-counting scheme [17, 18], the nucleon-nucleon effective potential

contains two independent contact interactions and instantaneous one-pion exchange. As in
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previous lattice studies we make use of an “improved” leading-order action. This improved

leading-order action is treated completely non-perturbatively, while higher-order interactions

are included as a perturbative expansion in powers of Q/Λ.

In our lattice calculations we use the improved LO3 lattice action introduced in Ref. [6]

with spatial lattice spacing a = (100 MeV)−1 = 1.97 fm and temporal lattice spacing

at = (150 MeV)−1 = 1.32 fm. We take the parameter values gA = 1.29, fπ = 92.2 MeV,

mπ = mπ0 = 134.98 MeV. For the nucleon mass we use m = 938.92 MeV. Many of the

calculations presented in this paper have never been attempted before, and our choice of

spatial lattice spacing is made to optimize the efficiency of the Monte Carlo lattice calcula-

tions. While 1.97 fm is much larger than lattice spacings used lattice QCD simulations, we

should emphasize that we are not probing the quark and gluon substructure of nucleons but

rather the distribution of nucleons within nuclei. Our lattice spacing corresponds with a

maximum filling density of more than three times normal nuclear matter density. In future

studies the same systems will also be analyzed using smaller lattice spacings.

Throughout this discussion we first present the interactions in continuum notation and

then later give the corresponding lattice operator. For the continuum notation we give

matrix elements for incoming and outgoing two-nucleon momentum states. In the following

~q denotes the t-channel momentum transfer. We use τ to represent Pauli matrices in

isospin space and ~σ for Pauli matrices in spin space. The interactions correspond with the

amplitude,

A (VLO) = CS=0,I=1f(~q)

(

1

4
− 1

4
~σA · ~σB

)(

3

4
+

1

4
τA · τB

)

+ CS=1,I=0f(~q)

(

3

4
+

1

4
~σA · ~σB

)(

1

4
− 1

4
τA · τB

)

−
(

gA
2fπ

)2
(τA · τB) (~q · ~σA) (~q · ~σB)

q2 +m2
π

. (1)

We use a Euclidean-time transfer-matrix lattice formalism. The transfer matrix is the

normal-ordered exponential of the lattice Hamiltonian, : exp(−H∆t) : , where ∆t equals

one temporal lattice spacing. We use the lattice notation adopted in several previous

publications and which is summarized in the appendix. Let VS=0,I=1 be the lattice density-
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density correlation for the spin-singlet isospin-triplet channel in momentum space,

VS=0,I=1(~q) =
3

32
: ρa

†,a(~q)ρa
†,a(−~q) : − 3

32
:
∑

S

ρa
†,a

S (~q)ρa
†,a

S (−~q) :

+
1

32
:
∑

I

ρa
†,a

I (~q)ρa
†,a

I (−~q) : − 1

32
:
∑

S,I

ρa
†,a

S,I (~q)ρ
a†,a
S,I (−~q) : . (2)

Let VS=1,I=0 be the density-density correlation for the spin-triplet isospin-singlet channel,

VS=1,I=0(~q) =
3

32
: ρa

†,a(~q)ρa
†,a(−~q) : + 1

32
:
∑

S

ρa
†,a

S (~q)ρa
†,a

S (−~q) :

− 3

32
:
∑

I

ρa
†,a

I (~q)ρa
†,a

I (−~q) : − 1

32
:
∑

S,I

ρa
†,a

S,I (~q)ρ
a†,a
S,I (−~q) : . (3)

We use these functions to write the leading-order transfer matrix,

MLO =: exp







−Hfreeαt −
αt

L3

∑

~q

f(~q) [CS=0,I=1VS=0,I=1(~q) + CS=1,I=0VS=1,I=0(~q)]

+
g2Aα

2
t

8f 2
πqπ

∑

S1,S2,I

∑

~n1,~n2

GS1S2(~n1 − ~n2)ρ
a†,a
S1,I

(~n1)ρ
a†,a
S2,I

(~n2)







: . (4)

The momentum-dependent coefficient function f(~q) is given by

f(~q) = f−1
0 exp

[

−b
∑

l

(1− cos ql)

]

, (5)

where

f0 =
1

L3

∑

~q

exp

[

−b
∑

l

(1− cos ql)

]

. (6)

We use the value b = 0.6, which gives approximately the correct effective range for the two

S-wave channels when CS=0,I=1 and CS=1,I=0 are tuned to the physical S-wave scattering

lengths.

III. NEXT-TO-LEADING ORDER

At next-to-leading order (NLO) the two-nucleon effective potential includes seven contact

interactions carrying two powers of momentum, corrections to the two LO contact interac-

tions, and the leading contribution from the instantaneous two-pion exchange potential

(TPEP) [19–23],

VNLO = VLO +∆V (0) + V (2) + V TPEP
NLO . (7)
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The tree-level amplitudes for the contact interactions are

A
(

∆V (0)
)

= ∆C +∆CI2τA · τB (8)

and

A
(

V (2)
)

= C1q
2 + C2k

2 +
(

C3q
2 + C4k

2
)

(~σA · ~σB)

+ iC5
1

2
(~σA + ~σB) ·

(

~q × ~k
)

+ C6 (~q · ~σA) (~q · ~σB) + C7

(

~σA · ~k
)(

~σB · ~k
)

. (9)

The amplitude for the NLO two-pion exchange potential is [24, 25]

A
[

V TPEP
NLO

]

= − τA · τB

384π2f 4
π

L(q)

[

4m2
π

(

5g4A − 4g2A − 1
)

+ q2
(

23g4A − 10g2A − 1
)

+
48g4Am

4
π

4m2
π + q2

]

− 3g4A
64π2f 4

π

L(q)
[

(~q · ~σA) (~q · ~σB)− q2 (~σA · ~σB)
]

, (10)

where

L(q) =
1

2q

√

4m2
π + q2 ln

√

4m2
π + q2 + q

√

4m2
π + q2 − q

. (11)

In the lattice calculations we use a low-cutoff modification of the usual power counting

scheme. For nearly all q < Λ we can expand the NLO two-pion exchange potential in

powers of q2/(4m2
π). This expansion fails to converge only for values of q near the cutoff

scale Λ ≈ 2.3mπ, where the effective theory already breaks down due to large cutoff effects.

In Fig. (1) we show the various functions appearing in the two-pion exchange potential and

comparsions with their analytic expansions up to O(q2) and O(q4). We show the function

L(q), the dimensionless 2mπ pole function,

D2π(q
2) =

4m2
π

4m2
π + q2

, (12)

as well as the dimensionless function 2mπA(q). The function A(q) appears later in our

discussion, Eq. (26), in connection with the NNLO two-pion exchange potential. In each

case the analytic expansion approximates the full function quite well for q less than 200 MeV.

For our chosen lattice spacing, this covers the entire range of validity expected for the low-

energy effective theory.

Instead of retaining the full non-local structure of V TPEP
NLO at this lattice spacing, we simply

use

VLO = V (0) + V OPEP, (13)
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FIG. 1: The functions L(q), D2π(q), and 2mπA(q) appearing in the two-pion exchange potential

and comparsions with their analytic expansions up to O(q2) and O(q4).

VNLO = VLO +∆V (0) + V (2). (14)

Terms with up to two powers of q from the momentum expansion of V TPEP
NLO are absorbed as

a redefinition of the coefficients in ∆V (0) and V (2).

At next-to-leading order the lattice transfer matrix is

MNLO =MLO − αt : [∆V +∆VI2 + Vq2 + VI2,q2 + VS2,q2

+VS2,I2,q2 + V(q·S)2 + VI2,(q·S)2 + V I=1
(iq×S)·k

]

MLO : . (15)

The corrections to the leading-order contact interactions are

∆V =
1

2
∆C :

∑

~n

ρa
†,a(~n)ρa

†,a(~n) :, (16)

∆VI2 =
1

2
∆CI2 :

∑

~n,I

ρa
†,a

I (~n)ρa
†,a

I (~n) :, (17)

and the seven independent contact interactions with two derivatives are

Vq2 = −1

2
Cq2 :

∑

~n,l

ρa
†,a(~n)▽2

l ρ
a†,a(~n) :, (18)

VI2,q2 = −1

2
CI2,q2 :

∑

~n,I,l

ρa
†,a

I (~n)▽2
l ρ

a†,a
I (~n) :, (19)
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VS2,q2 = −1

2
CS2,q2 :

∑

~n,S,l

ρa
†,a

S (~n)▽2
l ρ

a†,a
S (~n) :, (20)

VS2,I2,q2 = −1

2
CS2,I2,q2 :

∑

~n,S,I,l

ρa
†,a

S,I (~n)▽
2
l ρ

a†,a
S,I (~n) :, (21)

V(q·S)2 =
1

2
C(q·S)2 :

∑

~n

∑

S

∆Sρ
a†,a
S (~n)

∑

S′

∆S′ρa
†,a

S′ (~n) :, (22)

VI2,(q·S)2 =
1

2
CI2,(q·S)2 :

∑

~n,I

∑

S

∆Sρ
a†,a
S,I (~n)

∑

S′

∆S′ρa
†,a

S′,I (~n) :, (23)

V I=1
(iq×S)·k = − i

2
CI=1

(iq×S)·k







3

4
:
∑

~n,l,S,l′

εl,S,l′
[

Πa†,a
l (~n)∆l′ρ

a†,a
S (~n) + Πa†,a

l,S (~n)∆l′ρ
a†,a(~n)

]

:

+
1

4
:

∑

~n,l,S,l′,I

εl,S,l′
[

Πa†,a
l,I (~n)∆l′ρ

a†,a
S,I (~n) + Πa†,a

l,S,I(~n)∆l′ρ
a†,a
I (~n)

]

:







. (24)

The densities, current densities, and symbols ∆l and ▽
2
l , are defined in the appendix. The

V I=1
(iq×S)·k term eliminates lattice artifacts in the spin-triplet even-parity channels. This is

accomplished by projecting onto the isospin-triplet channel.

IV. NEXT-TO-NEXT-TO-LEADING ORDER

At next-to-next-to-leading order (NNLO) there are no additional two-nucleon contact

interactions. The two-pion exchange potential contains a subleading contribution,

A
[

V TPEP
NNLO

]

= − 3g2A
16πf 4

π

A(q)
(

2m2
π + q2

) [

2m2
π (2c1 − c3)− c3q

2
]

− g2Ac4 (τA · τB)

32πf 4
π

A(q)
(

4m2
π + q2

) [

(~q · ~σA) (~q · ~σB)− q2 (~σA · ~σB)
]

, (25)

where

A(q) =
1

2q
arctan

q

2mπ
. (26)

However our low-cutoff expansion in powers q2/(4m2
π) reduces the NNLO two-pion exchange

potential to a sum of contact interactions with at least four powers of q. So in this scheme

there are no additional contributions to the two-nucleon potential at NNLO. The only new

contributions at NNLO are due to three-nucleon interactions,

VNNLO = VNLO + V
(3N)
NNLO. (27)
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π π

FIG. 2: Three-nucleon forces at NNLO. Diagrams (a), (b), and (c) show the contact potential,

V
(3N)
contact, one-pion exchange potential V

(3N)
OPE , and two-pion exchange potential V

(3N)
TPE .

Few-nucleon forces in chiral effective field theory beyond two nucleons were introduced in

Ref. [18]. In Ref. [26] it was shown that three-body effects first appear at next-to-next-to-

leading order (NNLO). The NNLO three-nucleon effective potential includes a pure contact

potential, V
(3N)
contact, one-pion exchange potential, V

(3N)
OPE , and a two-pion exchange potential,

V
(3N)
TPE ,

V
(3N)
NNLO = V

(3N)
contact + V

(3N)
OPE + V

(3N)
TPE . (28)

The corresponding diagrams are shown in Fig. 2.

Similar to our continuum notation for two-nucleon interactions, we write the tree-level

amplitude for three-nucleon interactions with nucleons A, B, C. We sum over all permu-

tations P (A,B,C) of the labels, and ~qA, ~qB, ~qC are defined as the differences between final

and initial momenta for the respective nucleons. The amplitudes for V
(3N)
contact and V

(3N)
OPE are

[27, 28]

A
[

V
(3N)
contact

]

=
1

2
E

∑

P (A,B,C)

(τA · τB) , (29)

A
[

V
(3N)
OPE

]

= − gA
8f 2

π

D
∑

P (A,B,C)

~qA · ~σA
q2A +m2

π

(~qA · ~σB) (τA · τB) . (30)

Following the notation in Ref. [28], we define dimensionless parameters cE and cD,

E =
cE
f 4
πΛχ

, D =
cD
f 2
πΛχ

, (31)

and take Λχ = 700 MeV.

For convenience we separately label three parts of the two-pion exchange potential,

V
(3N)
TPE = V

(3N)
TPE1 + V

(3N)
TPE2 + V

(3N)
TPE3. (32)
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The corresponding amplitudes are

A
[

V
(3N)
TPE1

]

=
c3
f 2
π

(

gA
2fπ

)2
∑

P (A,B,C)

(~qA · ~σA) (~qB · ~σB)
(q2A +m2

π) (q
2
B +m2

π)
(~qA · ~qB) (τA · τB) , (33)

A
[

V
(3N)
TPE2

]

= −2c1m
2
π

f 2
π

(

gA
2fπ

)2
∑

P (A,B,C)

(~qA · ~σA) (~qB · ~σB)
(q2A +m2

π) (q
2
B +m2

π)
(τA · τB) , (34)

A
[

V
(3N)
TPE3

]

=
c4
2f 2

π

(

gA
2fπ

)2

×
∑

P (A,B,C)

(~qA · ~σA) (~qB · ~σB)
(q2A +m2

π) (q
2
B +m2

π)
[(~qA × ~qB) · ~σC ] [(τA × τB) · τC ] . (35)

The constants c1, c3, c4 parameterize the coupling of the nucleon to two pions. These

have been determined from fits to low-energy pion-nucleon scattering data, and the values

c1 = −0.81 GeV−1, c3 = −4.7 GeV−1, c4 = 3.4 GeV−1 are used here [29, 30].

At next-to-next-to-leading order the lattice transfer matrix is

MNNLO =MNLO − αt :
[

V
(3N)
contact + V

(3N)
OPE + V

(3N)
TPE1 + V

(3N)
TPE2 + V

(3N)
TPE3

]

MLO : . (36)

From the constraints of isospin symmetry, spin symmetry, and Fermi statistics, there is

only one independent three-nucleon contact interaction [28, 31]. For our lattice action the

contact interaction V
(3N)
contact is a product of total nucleon densities,

V
(3N)
contact =

1

6
D

(3N)
contact :

∑

~n

[

ρa
†,a(~n)

]3

: . (37)

The one-pion exchange potential V
(3N)
OPE can be written as

V
(3N)
OPE = −D(3N)

OPE

gAαt

2fπqπ

∑

~n,S,I

∑

~n′,S′

〈∆S′π′
I(~n

′, nt)∆Sπ
′
I(~n, nt)〉 : ρa

†,a
S′,I (~n

′)ρa
†,a

S,I (~n)ρ
a†,a(~n) : . (38)

The three two-pion exchange terms V
(3N)
TPE1, V

(3N)
TPE2, V

(3N)
TPE3 are

V
(3N)
TPE1 = D

(3N)
TPE1

g2Aα
2
t

4f 2
πq

2
π

∑

~n,S,I

∑

~n′,S′

∑

~n′′,S′′



 〈∆S′π′
I(~n

′, nt)∆Sπ
′
I(~n, nt)〉

× 〈∆S′′π′
I(~n

′′, nt)∆Sπ
′
I(~n, nt)〉 : ρa

†,a
S′,I (~n

′)ρa
†,a

S′′,I(~n
′′)ρa

†,a(~n) :



 , (39)
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V
(3N)
TPE2 = D

(3N)
TPE2m

2
π

g2Aα
2
t

4f 2
πq

2
π

∑

~n,I

∑

~n′,S′

∑

~n′′,S′′



 〈∆S′π′
I(~n

′, nt)�π
′
I(~n, nt)〉

× 〈∆S′′π′
I(~n

′′, nt)�π
′
I(~n, nt)〉 : ρa

†,a
S′,I (~n

′)ρa
†,a

S′′,I(~n
′′)ρa

†,a(~n) :



 , (40)

V
(3N)
TPE3 = D

(3N)
TPE3

g2Aα
2
t

4f 2
πq

2
π

∑

~n,S1,S2,S3

∑

I1,I2,I3

∑

~n′,S′

∑

~n′′,S′′





×
〈

∆S′π′
I1(~n

′, nt)∆S1π
′
I1(~n, nt)

〉 〈

∆S′′π′
I2(~n

′′, nt)∆S2π
′
I2(~n, nt)

〉

× εS1,S2,S3εI1,I2,I3 : ρ
a†,a
S′,I1

(~n′)ρa
†,a

S′′,I2
(~n′′)ρa

†,a
S3,I3

(~n) :



 . (41)

The relations between these lattice operator coefficients and the coefficients in Eq. (29-35)

are

D
(3N)
contact = −3E = − 3cE

f 4
πΛχ

, D
(3N)
OPE =

D

4fπ
=

cD
4f 3

πΛχ

, (42)

D
(3N)
TPE1 =

c3
f 2
π

, D
(3N)
TPE2 = −2c1

f 2
π

, D
(3N)
TPE3 =

c4
2f 2

π

. (43)

V. ISOSPIN BREAKING AND THE COULOMB INTERACTION

In this study we include isospin-breaking terms and the Coulomb interaction. Isospin

breaking (IB) in effective field theory has been addressed in the literature [32–39]. In the

counting scheme proposed in Ref. [39], the isospin-breaking one-pion exchange interaction

and Coulomb potential are considered to be the same size as O(Q2) corrections at NLO. For

the isospin-symmetric interactions we used the neutral pion mass, mπ = mπ0 . Therefore

the isospin-violating one-pion exchange interaction due to pion mass differences is

A
[

V OPEP, IB
]

= −
(

gA
2fπ

)2

[(τ1)A (τ1)B + (τ2)A (τ2)B]

× (~q · ~σA) (~q · ~σB)
[

1

q 2 +m2
π±

− 1

q 2 +m2
π0

]

. (44)

We treat the Coulomb potential in position space with the usual αEM/r repulsion between

protons,

A
[

V EM
]

=
αEM

r

(

1 + τ3
2

)

A

(

1 + τ3
2

)

B

. (45)
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However on the lattice this definition is singular for two protons on the same lattice site.

The resolution of this problem is to include a counterterm in the form of a proton-proton

contact interaction. For consistency we will include all possible two-nucleon contact interac-

tions, namely, neutron-neutron, proton-proton, spin-singlet neutron-proton, and spin-triplet

neutron-proton. Since we will fit our isospin-symmetric interaction coefficients according to

neutron-proton scattering data, the two neutron-proton contact interactions are just linear

combinations of the NLO interactions, ∆V and ∆VI2 . This leaves two isospin-breaking

contact interactions. In momentum space the amplitude for these contact interactions are

A (Vnn) = Cnn

(

1− τ3
2

)

A

(

1− τ3
2

)

B

, (46)

A (Vpp) = Cpp

(

1 + τ3
2

)

A

(

1 + τ3
2

)

B

. (47)

On the lattice we add these isospin-breaking terms to the NLO transfer matrix,

MNLO →MNLO,IB, (48)

where

MNLO,IB =MNLO − αt :
[

V OPEP, IB + Vnn + Vpp
]

MLO : . (49)

The isospin-breaking one-pion exchange operator is

V OPEP, IB = −g
2
Aαt

8f 2
π

×
∑

I=1,2

∑

S1,S2

∑

~n1,~n2

ρa
†,a

S1,I
(~n1)ρ

a†,a
S2,I

(~n2)

[

GS1S2(~n1 − ~n2, mπ±)

qπ(mπ±)
− GS1S2(~n1 − ~n2, mπ0)

qπ(mπ0)

]

.

(50)

The Coulomb interaction operator is

V EM =
1

2
αEM :

∑

~n1,~n2

1

r(~n1 − ~n2)

[

1

2
ρa

†,a(~n1) +
1

2
ρa

†,a
I=3(~n1)

] [

1

2
ρa

†,a(~n2) +
1

2
ρa

†,a
I=3(~n2)

]

: , (51)

where r is the distance on the lattice. We take the value of r at the origin to be 1/2,

r(~n) = max

(

1

2
, |~n|

)

. (52)

This convention choice has no observable effect since we also have a proton-proton contact

interaction which is fitted to proton-proton scattering data. The proton-proton contact

operator is

Vpp =
1

2
Cpp :

∑

~n

[

1

2
ρa

†,a(~n) +
1

2
ρa

†,a
I=3(~n)

] [

1

2
ρa

†,a(~n) +
1

2
ρa

†,a
I=3(~n)

]

: , (53)
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and the neutron-neutron contact operator is

Vnn =
1

2
Cnn :

∑

~n

[

1

2
ρa

†,a(~n)− 1

2
ρa

†,a
I=3(~n)

] [

1

2
ρa

†,a(~n)− 1

2
ρa

†,a
I=3(~n)

]

: . (54)

VI. LATTICE ARTIFACTS

In this section we discuss the relative size of lattice artifacts produced by lattice regu-

larization. We start with lattice artifacts that break rotational invariance. Lattice reg-

ularization reduces the full three-dimensional rotational group down to the cubic subroup.

Lattice operators that break rotational invariance first appear at O(Q2). These include

local two-nucleon operators with amplitude proportional to

∑

l=1,2,3

q2l (σA)l (σB)l . (55)

and

(τA · τB)
∑

l=1,2,3

q2l (σA)l (σB)l . (56)

These operators contain terms with total spin equal to zero, two, and four. The spin-zero

part of these operators do not break rotational invariance and are already included in our

set of O(Q2) local operators at NLO. The spin-two and spin-four parts of these operators

make contributions to spin-two and spin-four transition matrix elements. For example they

generate an unphysical mixing between the 3S1-
3D1 channel and the 3D3-

3G3 channel. In all

applications discussed here, however, we compute matrix elements of operators sandwiched

between states with definite and equal values for total spin. Hence the contribution of the

spin-two and spin-four operators must be quadratic or higher. The net result is that these

effects appear at O(Q4). They should be included in analyses which consider corrections

up to N3LO.

In addition to local terms, there are also non-local lattice artifacts associated with the

one-pion exchange potential. These include O(Q2) terms from the gradient coupling of the

pion,

τA · τB

q2 +m2
π

[

(~q · ~σA)
∑

l=1,2,3

q3l (σB)l + (~q · ~σB)
∑

l=1,2,3

q3l (σA)l

]

, (57)

and the pion propagator,

(τA · τB) (~q · ~σA) (~q · ~σB)
∑

l=1,2,3 q
4
l

(q2 +m2
π)

2 . (58)
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Once again the spin-two and spin-four parts of these operators appear only quadratically

when computing matrix elements of operators sandwiched between states with definite and

equal values of total spin.

The spin-zero parts of the non-local operators in Eq. (57-58) are lattice artifacts which

break chiral symmetry. When q < mπ these operators are similar to the local O(Q2) terms

we discussed at NLO. However for mπ < q < Λ the non-locality of these lattice artifacts

becomes apparent. As we will see later in our discussion of 3S1-
3D1 mixing, there seems

to be some signal of these artifacts in the mixing angle. The non-local O(Q2) effects can

be removed in future lattice studies using an O(a2)-improved pion lattice propagator and

O(a2)-improved gradient coupling of the pion to the nucleon. Similar non-local corrections

to the one-pion exchange potential are generated at O(αtQ
2/m) by the nonzero temporal

lattice spacing. In this case, however, the effects are numerically negligible due to our small

value for the temporal lattice spacing, at = (150 MeV)−1. This has been checked explicitly

by comparing nucleon-nucleon lattice scattering data for several different temporal lattice

spacings.

VII. RESULTS FOR NUCLEON-NUCLEON SCATTERING

We measure phase shifts and mixing angles using the spherical wall method [40]. This

consists of imposing a hard spherical wall boundary on the relative separation between the

two nucleons at some chosen radius Rwall. Scattering phase shifts are determined from the

energies of the spherical standing waves, and mixing angles are extracted from projections

onto spherical harmonics. For neutron-neutron scattering and neutron-proton scattering,

the asymptotic radial dependence for momentum p and orbital angular momentum L is

u
(p)
L (r) = r · R(p)

L (r) ∝ cot δL(p)SL(pr) + CL(pr), (59)

where R
(p)
L (r) is the radial wavefunction and SL and CL are Ricatti-Bessel functions of the

first and second kind. For proton-proton scattering, however, the long-range electrostatic

potential requires that we use Coulomb wavefunctions. We replace SL(pr) by FL(η, pr) and

replace CL(pr) by GL(η, pr), where

η =
αEMm

2p
, (60)

FL(η, pr) = (pr)L+1e−iprcL(η) 1F1(L+ 1− iη, 2L+ 2, 2ipr), (61)
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FIG. 3: 1S0 neutron-proton and proton-proton phase shifts versus center of mass momentum.

GL(η, pr) =
(2i)2L+1 (pr)L+1e−iprΓ(L+ 1− iη)

Γ(2L+ 2)cL(η)
U(L+1− iη, 2L+2, 2ipr)+ iFL(η, pr), (62)

and

cL(η) =
2Le−πη/2 |Γ(L+ 1 + iη)|

Γ(2L+ 2)
. (63)

The function 1F1 is Kummer’s confluent hypergeometric function of the first kind, and the

function U is Kummer’s confluent hypergeometric function of the second kind.

In the following plots we show lattice scattering data for spatial lattice spacing a =

(100 MeV)−1 and temporal lattice spacing at = (150 MeV)−1. The 1S0 neutron-proton and

proton-proton phase shifts are shown in Fig. 3. For comparison we show partial wave results

from Ref. [41]. We see that the agreement is quite good for center of mass momenta up to

150 MeV. To constrain the neutron-neutron contact interaction, Cnn, we use the neutron-

neutron scattering length, which we take to be −18 fm with an uncertainty of ±1 fm [42–45].

In Fig. 4 we show a comparison of the 1S0 neutron-neutron and neutron-proton phase shifts

as calculated on the lattice.

In Fig. 5 we plot the 3S1 phase shift and 3S1-
3D1 mixing angle ε1 using the Stapp pa-

rameterization [46]. The agreement with the results of the Nijmegen PWA [41] for the 3S1

partial wave is good up to 150 MeV. The mixing angle is good at low momenta, but devi-
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FIG. 4: Comparison of the 1S0 neutron-neutron and neutron-proton phase shifts versus center of

mass momentum.

ations appear at higher momenta. This discrepancy is likely due to lattice artifacts such

as the terms previously discussed in Eq. (57-58) as well as the contribution of higher-order

interactions. In future work some improvement may be possible using an O(a2)-improved

pion lattice propagator and O(a2)-improved gradient coupling of the pion to the nucleon.

Nonetheless the physics of 3S1-
3D1 mixing appears correct at low energies. This we can test

by computing the quadrupole moment of the deuteron. With no additional free parameters

to tune we find 0.22 fm2 at leading order and 0.29 fm2 at next-to-leading order with isospin-

breaking contributions. The quadrupole moment is related to the strength of the mixing

angle at low momenta. We estimate an 8% uncertainty in fitting the mixing angle in that

regime, and so our result for the quadrupole moment with error bars is 0.29(2) fm2. This

agrees well with the physical value of 0.286 fm2.

In Fig. 6 we show results for neutron-proton scattering in the 1P1,
3P0,

3P1, and
3P2

channels. In all cases the comparison with physical data [41] is good up to center of mass

momenta of 150 MeV.

VIII. ENERGY SPLITTING BETWEEN TRITON AND HELIUM-3

The three-nucleon system is small enough that we can use iterative sparse-matrix eigen-

vector methods to compute energy levels on cubic periodic lattices. We fix the coefficient cE
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FIG. 5: 3S1 neutron-proton phase shift and 3S1-
3D1 mixing angle versus center of mass momentum.

as a function of cD by matching the physical triton energy at infinite volume, −8.48 MeV.

We consider cubes with side lengths L up to 16 fm and extract the infinite volume limit

using the asymptotic result [47],

E(L) = E(∞)− C

L
e−L/L0 +O

(

e−
√
2L/L0

)

. (64)

The value of cD is determined from a second observable such as the spin-doublet nucleon-

deuteron scattering phase shifts. It turns out however that the spin-doublet nucleon-

deuteron scattering phase shift provides only a mild constraint on cD, namely that cD ∼
O(1). Currently we are investigating other methods for constraining cD, including one recent

suggestion to determine cD from the triton beta decay rate [48]. In this analysis we simply

use the estimate cD ∼ O(1) and check the dependence of observables upon cD.

Although the triton energy at infinite volume is used to set the unknown coefficient cE,

the energy splitting between helium-3 and the triton is a testable prediction. The energy

difference between helium-3 and the triton is plotted in Fig. 7 as a function of cube length.

We show several different asymptotic fits using Eq. (64) and different subsets of data points.

To the order at which we are working there is no dependence of the energy splitting upon

the value of cD. Our calculations at next-to-next-to-leading order give a value of 0.780 MeV

with an infinite-volume extrapolation error of ±0.003 MeV. To estimate other errors we take
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FIG. 6: 1P1, 3P0, 3P1, and 3P2 neutron-proton phase shifts versus center of mass momentum.

into account an uncertainty of ±1 fm in the neutron scattering length and a 5% relative

uncertainty in our lattice fit of the splitting between neutron-proton and proton-proton

phase shifts at low energies. Our final result for the energy splitting with error bars is then

0.78(5) MeV. This agrees well with the experimental value of 0.76 MeV.

IX. HIGHER-ORDER INTERACTIONS

In this analysis we include all operators up to next-to-next-to-leading order. Some resid-

ual error is expected from omitted higher-order interactions starting at O(Q4). The size of

the error depends on the momentum scale probed by the physical system of interest. For

well-separated low-momentum nucleons no significant deviation should occur. For two nu-
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FIG. 8: Sketch of the relative contribution of omitted operators at O(Q4), O(Q5), O(Q6) for

various nucleon configurations. The relative contribution is dominated by the last case where four

nucleons are close together.

cleons in close proximity the systematic error should also remain very small. The properties

of the deuteron and soft nucleon-deuteron scattering are both accurately reproduced [10].

For three nucleons in close proximity the error increases a bit more, and for a tight cluster

of four nucleons it increases further. We stop at four nucleons since a localized collection

of five or more nucleons with no relative orbital angular momentum is forbidden by Fermi

statistics. The expected trend for systematic errors is sketched qualitatively in Fig. 8.

As the sketch suggests, the relative contribution is likely dominated by the last case where

four nucleons are close together. If this hypothesis is correct then the contribution of higher-
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order operators to low-energy phenomena should be approximately universal. Different

higher-order operators produce roughly the same effect on low-energy data. This situation

is analogous to the difficulty one finds in resolving the value of cD from low-energy three-

nucleon data. One useful consequence of this universality is that most of the residual error

can be cancelled by adjusting the coefficient of an effective four-nucleon contact term,

V
(4N)
effective =

1

24
D

(4N)
effective :

∑

~n

[

ρa
†,a(~n)

]4

: . (65)

This effective four-nucleon contact interaction should not be confused with the four-nucleon

contact interaction that appears at O(Q6). We are not suggesting a rearrangement of power

counting in chiral effective field theory. We are simply taking advantage of the expected

universality of missing higher-order interactions. Later in our discussion we present results

which test and appear to confirm this universality hypothesis.

The inclusion of V
(4N)
effective provides an opportunity to resolve another related issue that

was noted in earlier lattice calculations. Let |4None-site〉 be a configuration of four nucleons

on a single lattice site,

|4None-site〉 = a†0,0(~n)a
†
1,0(~n)a

†
0,1(~n)a

†
1,1(~n) |0〉 . (66)

The potential energy of this configuration is dependent upon the three-nucleon contact

operator and the local part of the three-nucleon one-pion-exchange interaction,

〈4None-site|V (3N)
contact |4None-site〉 = 4D

(3N)
contact, (67)

〈4None-site|V (3N)
OPE |4None-site〉 = 12

gAαt

fπqπ
D

(3N)
OPE

∑

S

GSS(~0). (68)

If D
(3N)
contact or D

(3N)
OPE is sufficiently large and negative, a clustering instability can be produced

in systems with four or more nucleons. This is a lattice artifact that appears on coarse

lattices [49], and is similar to the clustering instability found with point-like two-nucleon

contact interactions [9]. That problem was solved by using improved lattice actions with

operator smearing. An analogous technique could be adopted for the three-nucleon interac-

tions. In Ref. [10], however, a different approach was used. In that analysis the temporal

lattice spacing was adjusted to ensure that the size of the cutoff-dependent three-nucleon

operator coefficients were small.
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In this study we use a simpler and more direct technique. Let us define

D
′(4N)
effective = 〈4None-site| V (3N)

contact + V
(3N)
OPE + V

(4N)
effective |4None-site〉

= 4D
(3N)
contact + 12D

(3N)
OPE

gAαt

fπqπ

∑

S

GSS(~0) +D
(4N)
effective. (69)

The problem is that the local three-nucleon terms induce an effect much the same as a four-

nucleon contact interaction, and quite possibly a strong four-nucleon interaction. To remedy

this we treat D
(4N)
effective as a bare counterterm that removes the dependence on D

(3N)
contact and

D
(3N)
OPE . In the following we express all lattice results in terms of the renormalized coupling

D
′(4N)
effective.

X. AUXILIARY FIELDS AND PROJECTION MONTE CARLO

For systems with more than three nucleons, sparse-matrix calculations using the lattice

transfer matrix are not practical at large volumes. Instead we use projection Monte Carlo

with auxiliary fields. The auxiliary-field transfer matrix for the LO3 action requires sixteen

auxiliary fields. One auxiliary field is associated with the total nucleon density N †N , three

fields for the spin density N †~σN , three fields for the isospin density N †
τN , and nine fields for

the spin-isospin density N †~στN . Let us define M (nt)(π′
I , s, sS, sI , sS,I) as the leading-order

auxiliary-field transfer matrix at time step nt,

M (nt)(π′
I , s, sS, sI , sS,I) =: exp







−Hfreeαt −
gAαt

2fπ
√
qπ

∑

~n,S,I

∆Sπ
′
I(~n, nt)ρ

a†,a
S,I (~n)

+
1

4

√

(−3CS=0,I=1 − 3CS=1,I=0)αt

∑

~n

s(~n, nt)ρ
a†,a(~n)

+
i

4

√

(−3CS=0,I=1 + CS=1,I=0)αt

∑

~n,S

sS(~n, nt)ρ
a†,a
S (~n)

+
i

4

√

(CS=0,I=1 − 3CS=1,I=0)αt

∑

~n,I

sI(~n, nt)ρ
a†,a
I (~n)

+
i

4

√

(−CS=0,I=1 − CS=1,I=0)αt

∑

~n,S,I

sS,I(~n, nt)ρ
a†,a
S,I (~n)







: . (70)

We can write MLO as the normalized integral

MLO =

∫

Dπ′
IDsDsSDsIDsS,I e

−S
(nt)
ππ −S

(nt)
ss M (nt)(π′

I , s, sS, sI , sS,I)
∫

Dπ′
IDsDsSDsIDsS,I e

−S
(nt)
ππ −S

(nt)
ss

, (71)
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where S
(nt)
ππ is the piece of the instantaneous pion action at time step nt,

S(nt)
ππ (π′

I) =
1

2

∑

~n,I

π′
I(~n, nt)π

′
I(~n, nt)−

αt

qπ

∑

~n,I,l

π′
I(~n, nt)π

′
I(~n+ l̂, nt), (72)

and S
(nt)
ss is the auxiliary-field action at time step nt,

S(nt)
ss =

1

2

∑

~n,~n′

s(~n, nt)f
−1(~n− ~n′)s(~n′, nt) +

1

2

∑

~n,~n′,S

sS(~n, nt)f
−1(~n− ~n′)sS(~n

′, nt)

+
1

2

∑

~n,~n′,I

sI(~n, nt)f
−1(~n− ~n′)sI(~n

′, nt) +
1

2

∑

~n,~n′,S,I

sS,I(~n, nt)f
−1(~n− ~n′)sS,I(~n

′, nt),

(73)

with

f−1(~n− ~n′) =
1

L3

∑

~q

1

f(~q)
e−i~q·(~n−~n′). (74)

The contributions from NLO, NNLO, isospin-breaking, and Coulomb interactions are

treated using perturbation theory. This is done by including external sources coupled to

densities and current densities. Let us define

MLO(ε) =

∫

Dπ′
IDsDsSDsIDsS,I e

−S
(nt)
ππ −S

(nt)
ss M (nt)(π′

I , s, sS, sI , sS,I , ε)
∫

Dπ′
IDsDsSDsIDsS,I e

−S
(nt)
ππ −S

(nt)
ss

, (75)

where

M (nt)(π′
I , s, sS, sI , sS,I , ε)

=:M (nt)(π′
I , s, sS, sI , sS,I) exp

[

U (nt)(ε) + U
(nt)

I2 (ε)
]

: . (76)

The isospin-independent couplings are

U (nt)(ε) =
∑

~n

ερ(~n, nt)ρ
a†,a(~n) +

∑

~n,S

ερS(~n, nt)ρ
a†,a
S (~n) +

∑

~n,S

ε∆Sρ(~n, nt)∆Sρ
a†,a(~n)

+
∑

~n,S,S′

ε∆SρS′ (~n, nt)∆Sρ
a†,a
S′ (~n) +

∑

~n,l

ε▽2
l
ρ(~n, nt)▽

2
l ρ

a†,a(~n)

+
∑

~n,l,S

ε▽2
l
ρS(~n, nt)▽

2
l ρ

a†,a
S (~n) +

∑

~n,l

εΠl
(~n, nt)Π

a†,a
l (~n) +

∑

~n,l,S

εΠl,S
(~n, nt)Π

a†,a
l,S (~n),

(77)

21



the isospin-dependent couplings are

U
(nt)

I2 (ε) =
∑

~n,I

ερI (~n, nt)ρ
a†,a
I (~n) +

∑

~n,S,I

ερS,I (~n, nt)ρ
a†,a
S,I (~n) +

∑

~n,S,I

ε∆SρI (~n, nt)∆Sρ
a†,a
I (~n)

+
∑

~n,S,S′,I

ε∆SρS′,I
(~n, nt)∆Sρ

a†,a
S′,I (~n) +

∑

~n,l,I

ε▽2
l
ρI (~n, nt)▽

2
l ρ

a†,a
I (~n)

+
∑

~n,l,S,I

ε▽2
l
ρS,I (~n, nt)▽

2
l ρ

a†,a
S,I (~n) +

∑

~n,l,I

εΠl,I
(~n, nt)Π

a†,a
l,I (~n) +

∑

~n,l,S,I

εΠl,S,I
(~n, nt)Π

a†,a
l,S,I(~n).

(78)

All of the NLO, NNLO, isospin-breaking, and Coulomb interactions are generated by func-

tional derivatives with respect to the external source fields.

We extract the properties of the ground state using Euclidean-time projection. Let
∣

∣Ψfree
〉

be a Slater determinant of free-particle standing waves in a periodic cube for some

chosen number of nucleons and quantum numbers. LetM
(nt)
SU(4) 6π be an auxiliary-field transfer

matrix at time step nt,

M
(nt)
SU(4) 6π(s) =: exp

[

−Hfreeαt +
√

−CSU(4) 6παt

∑

~n

s(~n, nt)ρ
a†,a(~n)

]

: . (79)

We use the operator M
(nt)
SU(4) 6π(s) to set up the initial state for the lattice calculation,

|Ψ(t′)〉 =
(

MSU(4) 6π
)Lto

∣

∣Ψfree
〉

, (80)

where t′ = Ltoαt and Lto is the number of “outer” time steps. As the notation suggests,

the operator M
(nt)
SU(4) 6π(s) is invariant under Wigner’s SU(4) symmetry [50]. The repeated

multiplication by M
(nt)
SU(4) 6π(s) acts as an approximate low-energy filter. This part of the

Euclidean-time propagation is positive definite for any even number of nucleons invariant

under the SU(4) symmetry [51–53].

The Euclidean-time amplitude Z(t) is defined as

Z(t) = 〈Ψ(t′)| (MLO)
Lti |Ψ(t′)〉 , (81)

where t = Ltiαt and Lti is the number of “inner” time steps. The transient energy at time

t+ αt/2 is calculated by taking a numerical derivative of the logarithm of Z(t),

e−ELO(t+αt/2)·αt =
Z(t + αt)

Z(t)
. (82)
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The ground state energy E0,LO equals the asymptotic limit of the transient energy,

E0,LO = lim
t→∞

ELO(t+ αt/2). (83)

We calculate Euclidean-time projection amplitudes using the auxiliary-field formalism.

For a given configuration of auxiliary and pion fields, the contribution to the amplitude Z(t)

is proportional to the determinant of an A×A matrix of one-body amplitudes, where A is the

number of nucleons. Integrations over auxiliary and pion field configurations are computed

using hybrid Monte Carlo. Details of the method can be found in Ref. [9, 11, 54, 55].

The perturbative contributions from NLO, NNLO, isospin-breaking, and Coulomb inter-

actions are computed order-by-order in perturbation theory. For the first-order perturbative

correction to the energy, it suffices to compute operator expectation values. For general

operator O we define the Euclidean-time amplitude,

ZO(t) = 〈Ψ(t′)| (MLO)
Lti

/2O (MLO)
Lti

/2 |Ψ(t′)〉 . (84)

The expectation value of O for |Ψ0〉 is extracted by taking the large t limit of the ratio of

ZO(t) and Z(t),

lim
t→∞

ZO(t)

Z(t)
= 〈Ψ0|O |Ψ0〉 . (85)

In the appendix we show precise numerical tests of the equivalence of the auxiliary-field

Monte Carlo formalism and the original transfer matrix formalism.

XI. RESULTS FOR HELIUM-4

We compute the ground state energy for helium-4 in a periodic box of length 9.9 fm. For
∣

∣Ψfree
〉

we take the Slater determinant formed by standing waves,

〈0| ai,j(~n) |ψ1〉 ∝ δi,0δj,1, 〈0| ai,j(~n) |ψ2〉 ∝ δi,0δj,0, (86)

〈0| ai,j(~n) |ψ3〉 ∝ δi,1δj,1, 〈0| ai,j(~n) |ψ4〉 ∝ δi,1δj,0. (87)

This produces a state with zero total momentum and the quantum numbers of the helium-4

ground state. For each value of the Euclidean time, t, we use 2048 processors to generate

about 5×106 hybrid Monte Carlo trajectories. Each processor runs independent trajectories,

and averages and stochastic errors are calculated from the distribution of results from all

processors.

23



For the numerical extrapolation in t, we use a decaying exponential for the leading-order

energy,

ELO(t) ≈ E0,LO + ALOe
−δE·t. (88)

For each of the perturbative energy corrections from NLO, isospin-breaking (IB), electro-

magnetic (EM), and NNLO interactions we use

∆E(t) ≈ ∆E0 +∆Ae−δE·t/2. (89)

The unknown parameters E0,LO, ALO, ∆A, and δE, are determined by least squares fitting.

The e−δE·t dependence in Eq. (88) gives the contribution of low-energy excitations with

energy gap δE above the ground state. The e−δE·t/2 dependence in Eq. (89) gives the

contribution of matrix elements between the ground state and excitations at energy gap δE.

Given the finite interval over which we measure the Euclidean-time dependence, we expect

some exponential dependence from other energy excitations not at energy δE above the

ground state. In order to estimate the size of the induced systematic errors, we generate an

ensemble of different exponential fits which include dropping the two first two data points and

then dropping the last two data points. This gives some estimate of the spread in energies

of contributing higher energy states. In the following we quote total extrapolation errors

which include the uncertainty due to the stochastic errors and the effect of the distribution

in δE. In future studies we hope to improve this process further by considering different

initial states in order to triangulate a common extrapolated value at infinite t.

In Fig. 9 we show the energy versus Euclidean time projection for the helium-4 ground

state with LO, NLO, IB, EM, and NNLO interactions. The plot on the left shows the

leading-order results and the extrapolated t → ∞ values for the higher-order contributions

added cumulatively. These cumulative results are shown with error bars on the right edge

of the plot. The plot on the right shows the higher-order corrections separately. For each

case we show the best fit as well as the one standard-deviation bound. We estimate this

bound by generating an ensemble of fits determined with added random Gaussian noise

proportional to the error bars of each data point and also varying the number of fitted data

points. These results are similar to those found in Ref. [10] using the LO2 action. For

cD = 1 we get −30.5(4) MeV at LO, −30.6(4) MeV at NLO, −29.2(4) MeV at NLO with

IB and EM corrections, and −30.1(5) MeV at NNLO. When the bare interaction D
(4N)
effective

is held fixed, the helium-4 energy decreases 0.4(1) MeV for each unit increase in cD.
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FIG. 9: Ground state energy for helium-4 as a function of Euclidean time projection. See text for

details.

Apart from direct comparisons with experimental data, an independent estimate of sys-

tematic errors due to truncation of higher-order terms can be made by comparing the dif-

ferences among the lattice results at each order, LO, NLO, and NNLO. One caveat here is

that sometimes the differences can be unusually small, either by chance or due to underly-

ing physics. For example there is only a very small difference between the LO and NLO

energies for helium-4. This can be explained by the fact that the interactions for helium-4

are predominantly in the S-channels, and the improved LO3 action is already quite accurate

for S-wave scattering. For helium-4 we estimate a residual error of size about 1 MeV for

the omitted interactions. This appears consistent with the 1.8 MeV deviation between the

NNLO result and the physical binding energy for helium-4.

For nuclei beyond A = 4, we will test the universality hypothesis for higher-order inter-

actions by tuning the effective four-nucleon contact interaction D
′(4N)
effective to give the physical

helium-4 energy of −28.3 MeV. The contribution of the effective four-nucleon contact in-

teraction to the helium-4 energy is shown in Fig. 9.
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XII. RESULTS FOR LITHIUM-6

We compute the ground state energy for lithium-6 in a periodic box of length 9.9 fm.

For
∣

∣Ψfree
〉

we choose standing waves,

〈0| ai,j(~n) |ψ1〉 ∝ δi,1δj,1, 〈0| ai,j(~n) |ψ2〉 ∝ δi,1δj,0. (90)

〈0| ai,j(~n) |ψ3〉 ∝ δi,0δj,1 cos
2πn3

L
, 〈0| ai,j(~n) |ψ4〉 ∝ δi,0δj,0 cos

2πn3

L
, (91)

〈0| ai,j(~n) |ψ5〉 ∝ δi,0δj,1 sin
2πn3

L
, 〈0| ai,j(~n) |ψ6〉 ∝ δi,0δj,0 sin

2πn3

L
. (92)

This combination produces a state with zero total momentum and the quantum numbers of

the lithium-6 ground state. For each value of t a total of about 5× 106 hybrid Monte Carlo

trajectories are generated by 2048 processors.

In Fig. 10 we show the energy versus Euclidean time projection for lithium-6. For the

numerical extrapolation in t we use the same decaying exponential functions in Eq. (88-89).

We show the best fit as well as the one standard-deviation bound. For cD = 1 we get

−32.6(9) MeV at LO, −34.6(9) MeV at NLO, −32.4(9) MeV at NLO with IB and EM

corrections, and −34.5(9) MeV at NNLO. Our error estimate due to truncation at NNLO

is about 2 MeV. Adding the contribution of the effective four-nucleon interaction D
′(4N)
effective

to the NNLO result gives −32.9(9) MeV. This lies within error bars of the physical value

−32.0 MeV. However we expect some overbinding due to the finite periodic volume. The

finite volume analysis in Ref. [10] found a finite volume dependence of less than 1 MeV

for the helium-4 ground state in a periodic box of length 9.9 fm. However a larger effect

is expected for lithium-6 due to the larger spatial distribution of the two P -shell nucleons.

Further calculations at varying volumes will be needed to determine this volume dependence.

Compared with helium-4, there is a much larger difference between the LO and NLO en-

ergies for lithium-6. This may indicate additional binding coming from the NLO corrections

in P -wave channels. The dependence of the energy on cD can be analyzed in several differ-

ent ways. When the bare interaction D
(4N)
effective is held fixed, the lithium-6 energy decreases

0.7(1) MeV for each unit increase in cD. When the effective four-nucleon interaction is ad-

justed according to the physical helium-4 energy, the lithium-6 energy decreases 0.35(5) MeV

per unit increase in cD.
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FIG. 10: Ground state energy for lithium-6 as a function of Euclidean time projection. See text

for details.

XIII. RESULTS FOR CARBON-12

We compute the ground state energy of carbon-12 in a periodic box of length 13.8 fm.

For
∣

∣Ψfree
〉

we take the Slater determinant formed by standing waves,

〈0| ai,j(~n) |ψ4k+1〉 ∝ δi,0δj,1fk(~n), 〈0| ai,j(~n) |ψ4k+2〉 ∝ δi,0δj,0fk(~n), (93)

〈0| ai,j(~n) |ψ4k+3〉 ∝ δi,1δj,1fk(~n), 〈0| ai,j(~n) |ψ4k+4〉 ∝ δi,1δj,0fk(~n), (94)

where

f0(~n) = 1, f1(~n) = cos 2πn3

L
, f2(~n) = sin 2πn3

L
. (95)

This combination produces a state with zero total momentum and the quantum numbers

of the carbon-12 ground state. For each value of t a total of 2 × 106 hybrid Monte Carlo

trajectories are generated by 2048 processors.

Fig. 11 shows the energy versus Euclidean time projection for carbon-12. For cD = 1 we

get −109(2) MeV at LO, −115(2) MeV at NLO, −108(2) MeV at NLO with IB and EM

corrections, and −106(2) MeV at NNLO. Our error estimate due to truncation at NNLO

is about 5 MeV. The small 2 MeV difference between NLO and NNLO results is due to a

cancellation of several larger contributions. Adding the contribution of the effective four-

nucleon interaction D
′(4N)
effective to the NNLO result gives −99(2) MeV. This is an overbinding

of 7% compared to the physical value, −92.2 MeV. While this agreement as a final result
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FIG. 11: Ground state energy for carbon-12 as a function of Euclidean time projection. See text

for details.

would not be bad, an overbinding of 7% is actually a reasonable estimate of the finite volume

correction for carbon-12 in a periodic box of length 13.8 fm. If so the error at infinite volume

would in fact be much smaller than 7%. Further calculations at varying volumes will be

needed to measure the volume dependence.

When the bare interaction D
(4N)
effective is held fixed, the carbon-12 energy decreases

1.7(3) MeV per unit increase in cD. When the effective four-nucleon interaction is adjusted

according to the physical helium-4 energy, the carbon-12 energy decreases only 0.3(1) MeV

per unit increase in cD. The much reduced dependence upon on cD is consistent with our

universality hypothesis regarding systematic errors. In three-nucleon systems the value of

cD is difficult to resolve due to similarities of the one-pion exchange three-nucleon inter-

action and the three-nucleon contact interaction at low energies. For systems with four

or more nucleons, the difference between these three-nucleon interactions becomes signif-

icant. However our universality hypothesis suggests that this difference behaves like an

effective four-nucleon contact interaction. This explains why the dependence on cD goes

away when we include an effective four-nucleon contact interaction tuned to the physical

helium-4 energy.
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XIV. SUMMARY AND COMMENTS

In this paper we have presented several new methods and results in lattice effective field

theory. We described the first lattice results for lithium-6 and carbon-12 using chiral effective

field theory. This represents a significant advance in the range of problems accessible using

lattice effective field theory. We also detailed the first lattice calculations to include isospin-

breaking and Coulomb interactions, and computed the energy splitting between helium-3

and the triton. The accuracy of the lattice calculations presented here are competitive with

recent calculations obtained using other ab initio methods. Coupled cluster calculations

without three-nucleon interactions are accurate to within 1 MeV per nucleon for medium

mass nuclei [56]. Constrained-path Green’s function Monte Carlo calculations generally

have an accuracy of 1%−2% in energy for nuclei A ≤ 12. The most recent result for carbon-

12 is −93.2(6) MeV using AV18 and the IL7 three-nucleon force [57]. The most recent

no-core shell model calculation for carbon-12 with the JISP16 NN interaction considers two

different extrapolation methods to obtain values −93.9(1.1) MeV and −95.1(2.7) MeV [58].

We also mention some recent lattice QCD simulations in the strong coupling limit. While

quite different from physical nuclei, the strong coupling analog of nuclei have been simulated

for up to twelve nucleons [59].

Future lattice studies should look at probing large volumes, decreasing the lattice spacing,

and including higher-order interactions. The computational scaling with the number of

nucleons suggests that larger nuclei are also possible. At fixed volume we find that the

time required by one processor to generate one HMC trajectory scales with the number of

nucleons as A1.7 for A ≤ 16. For carbon-12 calculations the time required by one processor

to generate one HMC trajectory scales with volume as V 1.5. For nuclei with S = 0 and

I = 0 the average sign
〈

eiθ
〉

scales as e−0.11A. From this scaling data we estimate that a

simulation of oxygen-16 would require about 1.8 TFlop-yr.

Lattice effective field theory should prove a useful tool for few-body calculations of nuclei

as well as many-body calculations of neutron and nuclear matter. The method is also quite

attractive theoretically as it uses only the general principles of effective field theory. All

systematic errors are introduced up front when defining the truncated low-energy effective

theory. This eliminates approximation errors tied with a specific calculational tool, physical

system, or observable. The reduction of these errors is not necessarily easy. However they
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can be clearly identified as either missing operators in the lattice action, finite volume effects,

or errors from finite Euclidean-time extrapolation. Future studies can then improve upon

existing calculations in a straightforward manner.
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Jülich Supercomputing Centre at the Forschungszentrum Jülich.

Appendix A: Lattice notation

The vector ~n represents integer-valued lattice vectors on a three-dimensional spatial lat-

tice, and ~p, ~q, ~k represent integer-valued momentum lattice vectors. l̂ = 1̂, 2̂, 3̂ are unit

lattice vectors in the spatial directions, a is the spatial lattice spacing, and L is the length

of the cubic spatial lattice in each direction. The lattice time step is at, and nt labels

the number of time steps. We define αt as the ratio between lattice spacings, αt = at/a.

Throughout our lattice discussion we use dimensionless parameters and operators, which

correspond with physical values multiplied by the appropriate power of a. Final results are

presented in physical units with the corresponding unit stated explicitly.

We use a and a† to denote annihilation and creation operators. We make explicit all

spin and isospin indices,

a0,0 = a↑,p, a0,1 = a↑,n, (A1)

a1,0 = a↓,p, a1,1 = a↓,n. (A2)

The first subscript is for spin and the second subscript is for isospin. We use τI with

I = 1, 2, 3 to represent Pauli matrices acting in isospin space and σS with S = 1, 2, 3 to

represent Pauli matrices acting in spin space. For the free nucleon we use the O(a4)-
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improved lattice Hamiltonian,

Hfree =
49

12m

∑

~n

∑

i,j=0,1

a†i,j(~n)ai,j(~n)

− 3

4m

∑

~n

∑

i,j=0,1

∑

l=1,2,3

[

a†i,j(~n)ai,j(~n+ l̂) + a†i,j(~n)ai,j(~n− l̂)
]

+
3

40m

∑

~n

∑

i,j=0,1

∑

l=1,2,3

[

a†i,j(~n)ai,j(~n+ 2l̂) + a†i,j(~n)ai,j(~n− 2l̂)
]

− 1

180m

∑

~n

∑

i,j=0,1

∑

l=1,2,3

[

a†i,j(~n)ai,j(~n + 3l̂) + a†i,j(~n)ai,j(~n− 3l̂)
]

. (A3)

The eight vertices of a unit cube on the lattice is used to define spatial derivatives. For

each spatial direction l = 1, 2, 3 and any lattice function f(~n), let

∆lf(~n) =
1

4

∑

ν1,ν2,ν3=0,1

(−1)νl+1f(~n+ ~ν), ~ν = ν11̂ + ν22̂ + ν33̂. (A4)

We also define the double spatial derivative along direction l,

▽
2
l f(~n) = f(~n+ l̂) + f(~n− l̂)− 2f(~n). (A5)

For the three-body NNLO interactions we also use the notation

�f(~n) =
1

8

∑

ν1,ν2,ν3=0,1

f(~n+ ~ν), ~ν = ν11̂ + ν22̂ + ν33̂. (A6)

1. Local densities and currents

We define the local density,

ρa
†,a(~n) =

∑

i,j=0,1

a†i,j(~n)ai,j(~n), (A7)

which is invariant under Wigner’s SU(4) symmetry [50]. Similarly we define the local spin

density for S = 1, 2, 3,

ρa
†,a

S (~n) =
∑

i,j,i′=0,1

a†i,j(~n) [σS]ii′ ai′,j(~n), (A8)

isospin density for I = 1, 2, 3,

ρa
†,a

I (~n) =
∑

i,j,j′=0,1

a†i,j(~n) [τI ]jj′ ai,j′(~n), (A9)
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and spin-isospin density for S, I = 1, 2, 3,

ρa
†,a

S,I (~n) =
∑

i,j,i′,j′=0,1

a†i,j(~n) [σS]ii′ [τI ]jj′ ai′,j′(~n). (A10)

For each static density we also have an associated current density. Similar to the defini-

tion of the lattice derivative ∆l in Eq. (A4), we use the eight vertices of a unit cube,

~ν = ν11̂ + ν22̂ + ν33̂, (A11)

for ν1, ν2, ν3 = 0, 1. Let ~ν(−l) for l = 1, 2, 3 be the result of reflecting the lth-component of

~ν about the center of the cube,

~ν(−l) = ~ν + (1− 2νl)l̂. (A12)

Omitting factors of i and 1/m, we can write the lth-component of the SU(4)-invariant current

density as

Πa†,a
l (~n) =

1

4

∑

ν1,ν2,ν3=0,1

∑

i,j=0,1

(−1)νl+1a†i,j(~n + ~ν(−l))ai,j(~n+ ~ν). (A13)

Similarly the lth-component of spin current density is

Πa†,a
l,S (~n) =

1

4

∑

ν1,ν2,ν3=0,1

∑

i,j,i′=0,1

(−1)νl+1a†i,j(~n+ ~ν(−l)) [σS]ii′ ai′,j(~n+ ~ν), (A14)

lth-component of isospin current density is

Πa†,a
l,I (~n) =

1

4

∑

ν1,ν2,ν3=0,1

∑

i,j,j′=0,1

(−1)νl+1a†i,j(~n+ ~ν(−l)) [τI ]jj′ ai,j′(~n+ ~ν), (A15)

and lth-component of spin-isospin current density is

Πa†,a
l,S,I(~n) =

1

4

∑

ν1,ν2,ν3=0,1

∑

i,j,i′,j′=0,1

(−1)νl+1a†i,j(~n+ ~ν(−l)) [σS]ii′ [τI ]jj′ ai′,j′(~n+ ~ν). (A16)

2. Instantaneous free pion action

The lattice action for free pions with purely instantaneous propagation is

Sππ(πI) = αt(
m2

π

2
+ 3)

∑

~n,nt,I

πI(~n, nt)πI(~n, nt)− αt

∑

~n,nt,I,l

πI(~n, nt)πI(~n + l̂, nt), (A17)
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where πI is the pion field labelled with isospin index I, and mπ = mπ0 . It is convenient to

define a rescaled pion field, π′
I ,

π′
I(~n, nt) =

√
qππI(~n, nt), (A18)

qπ = αt(m
2
π + 6). (A19)

Then

Sππ(π
′
I) =

1

2

∑

~n,nt,I

π′
I(~n, nt)π

′
I(~n, nt)−

αt

qπ

∑

~n,nt,I,l

π′
I(~n, nt)π

′
I(~n + l̂, nt). (A20)

In momentum space the action is

Sππ(π
′
I) =

1

L3

∑

I,~k

π′
I(−~k, nt)π

′
I(
~k, nt)

[

1

2
− αt

qπ

∑

l

cos kl

]

. (A21)

The instantaneous pion correlation function at spatial separation ~n is

〈

π′
I(~n, nt)π

′
I(~0, nt)

〉

=

∫

Dπ′
I π

′
I(~n, nt)π

′
I(~0, nt) exp [−Sππ]

∫

Dπ′
I exp [−Sππ]

(no sum on I)

=
1

L3

∑

~k

e−i~k·~nDπ(~k), (A22)

where

Dπ(~k) =
1

1− 2αt

qπ

∑

l cos kl
. (A23)

It is also useful to define the two-derivative pion correlator, GS1S2(~n),

GS1S2(~n) =
〈

∆S1π
′
I(~n, nt)∆S2π

′
I(~0, nt)

〉

(no sum on I)

=
1

16

∑

ν1,ν2,ν3=0,1

∑

ν′1,ν
′
2,ν

′
3=0,1

(−1)νS1 (−1)ν
′
S2

〈

π′
I(~n + ~ν − ~ν ′, nt)π

′
I(~0, nt)

〉

. (A24)

3. Pion mass differences

We outline the modifications that result from different masses for the charged pion and

neutral pion. Let

qπ(mπ±) = αt(m
2
π± + 6), qπ(mπ0) = αt(m

2
π0 + 6). (A25)

The rescaled pion fields are then

π′
1,2(~n, nt) =

√

qπ(mπ±)π1,2(~n, nt), π′
3(~n, nt) =

√

qπ(mπ0)π3(~n, nt). (A26)
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The momentum-space correlators for the charged and neutral pions are

Dπ(~k,mπ±) =
1

1− 2αt

qπ(mπ± )

∑

l cos kl
, (A27)

Dπ(~k,mπ0) =
1

1− 2αt

qπ(mπ0 )

∑

l cos kl
. (A28)

We can now repeat the steps in Eq. (A24) to define the two-derivative pion correlators

GS1S2(~n,mπ±) and GS1S2(~n,mπ0).

Appendix B: Precision tests

We use the three-nucleon system as a precision test of the lattice formalism and computer

codes. The same observables are calculated using both auxiliary-field Monte Carlo and the

exact transfer matrix without auxiliary fields. We choose a small system so that stochastic

errors are small enough to expose disagreement at the 0.1% − 1% level. We choose the

spatial length of the lattice to be L = 3 lattice units and set the outer time steps Lto = 0

and inner time steps Lti = 4. With 2048 processors we generate a total of about 107 hybrid

Monte Carlo trajectories. Each processor runs completely independent trajectories, and we

compute averages and stochastic errors by comparing the results of all processors.

We choose
∣

∣Ψfree
〉

to be a Slater determinant of free-particle standing waves where

〈0| ai,j(~n) |ψ1〉 ∝ δi,0δj,0, 〈0| ai,j(~n) |ψ2〉 ∝ δi,1δj,0, 〈0| ai,j(~n) |ψ3〉 ∝ δi,0δj,1. (B1)

The quantum numbers of this state correspond with helium-3 at zero momentum. At

leading order we find an energy of −49.72(6) MeV for the Monte Carlo calculation and

−49.7515 MeV for the exact transfer matrix. In Table I we compare Monte Carlo results

(MC) and exact transfer matrix calculations (Exact) for the derivative of the energy with

respect to each NLO coefficient. Table II shows the energy shifts due to the proton-proton

contact interaction and the Coulomb interaction, and Table III shows the derivative of

the energy with respect to each NNLO coefficient. The numbers in parentheses are the

estimated stochastic errors. In all cases the agreement between Monte Carlo results and

exact transfer calculations is consistent with estimated stochastic errors.
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TABLE I: Monte Carlo results versus exact transfer matrix calculations for the derivative of the

energy with respect to NLO coefficients.

NLO energy derivatives MC Exact

∂(∆ENLO(t))
∂(∆C) [104 MeV3] 3.722(3) 3.72347

∂(∆ENLO(t))

∂(∆C
I2)

[104 MeV3] −4.530(6) −4.53590

∂(∆ENLO(t))

∂(Cq2)
[109 MeV5] −2.055(2) −2.05383

∂(∆ENLO(t))

∂(CI2,q2)
[109 MeV5] 3.052(3) 3.05148

∂(∆ENLO(t))

∂(CS2,q2)
[109 MeV5] 0.161(3) 0.16376

∂(∆ENLO(t))

∂(CS2,I2,q2)
[109 MeV5] 5.240(5) 5.24260

∂(∆ENLO3
(t))

∂
(

C(q·S)2

) [109 MeV5] −1.5873(9) −1.58896

∂(∆ENLO(t))

∂
(

C
I2,(q·S)2

) [109 MeV5] 6.833(3) 6.83234

∂(∆ENLO(t))

∂(C(iq×S)·k)
[109 MeV5] 0.3356(5) 0.33702

∂(∆ENLO(t))

∂
(

C
I2,(iq×S)·k

) [109 MeV5] −0.996(2) −0.99656

TABLE II: Monte Carlo results versus exact transfer matrix calculations for the energy shifts due

to the proton-proton contact interaction and the Coulomb interaction.

IB and EM energy shifts MC Exact

∆Epp(t) [10−2 MeV] 1.937(2) 1.94128

∆EEM(t) [10−1 MeV] 3.712(2) 3.71232
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