92 research outputs found

    64Cu PET Imaging of the CXCR4 Chemokine Receptor Using a Cross-Bridged Cyclam Bis-Tetraazamacrocyclic Antagonist

    Get PDF
    © 2020 by the Society of Nuclear Medicine and Molecular Imaging. Expression of the chemokine receptor chemokine C-X-C motif receptor 4 (CXCR4) plays an important role in cancer metastasis, in autoimmune diseases, and during stem cell-based repair processes after stroke and myocardial infarction. Previously reported PET imaging agents targeting CXCR4 suffer from either high nonspecific uptake or bind only to the human form of the receptor. The objective of this study was to develop a high-stability 64Cu-labeled small-molecule PET agent for imaging both human and murine CXCR4 chemokine receptors. Methods: Synthesis, radiochemistry, stability and radioligand binding assays were performed for the novel tracer 64Cu-CuCB-bicyclam. In vivo dynamic PET studies were performed on mice bearing U87 (CXCR4 low-expressing) and U87.CXCR4 (human-CXCR4 high-expressing) tumors. Biodistribution and receptor blocking studies were performed on CD1-IGS immunocompetent mice. CXCR4 expression on tumor and liver disaggregates was confirmed using a combination of immunohistochemistry, quantitative polymerase chain reaction, and Western blot. Results:64Cu-CuCB-bicyclam has a high affinity for both the human and the murine variants of the CXCR4 receptor (half-maximal inhibitory concentration, 8 nM [human]/2 nM [murine]) and can be obtained from the parent chelator that has low affinity. In vitro and in vivo studies demonstrate specific uptake in CXCR4-expressing cells that can be blocked by more than 90% using a higher-affinity antagonist, with limited uptake in non-CXCR4-expressing organs and high in vivo stability. The tracer was also able to selectively displace the CXCR4 antagonists AMD3100 and AMD3465 from the liver. Conclusion: The tetraazamacrocyclic small molecule 64Cu-CuCB-bicyclam has been shown to be an imaging agent for the CXCR4 receptor that is likely to be applicable across a range of species. It has high affinity and stability and is suitable for preclinical research in immunocompetent murine models

    Mre11 modulates the fidelity of fusion between short telomeres in human cells

    Get PDF
    The loss of telomere function can result in the fusion of telomeres with other telomeric loci, or non-telomeric double-stranded DNA breaks. Sequence analysis of fusion events between short dysfunctional telomeres in human cells has revealed that fusion is characterized by a distinct molecular signature consisting of extensive deletions and micro-homology at the fusion points. This signature is consistent with alternative error-prone end-joining processes. We have examined the role that Mre11 may play in the fusion of short telomeres in human cells; to do this, we have analysed telomere fusion events in cells derived from ataxia-telangiectasia-like disorder (ATLD) patients that exhibit hypomorphic mutations in MRE11. The telomere dynamics of ATLD fibroblasts were indistinguishable from wild-type fibroblasts and they were proficient in the fusion of short telomeres. However, we observed a high frequency of insertion of DNA sequences at the fusion points that created localized sequence duplications. These data indicate that Mre11 plays a role in the fusion of short dysfunctional telomeres in human cells and are consistent with the hypothesis that as part of the MRN complex it serves to stabilize the joining complex, thereby controlling the fidelity of the fusion reaction

    Academic requirements for Certificate of Completion of Training in surgical training: Consensus recommendations from the Association of Surgeons in Training/National Research Collaborative Consensus Group.

    Get PDF
    BACKGROUND: Surgical trainees are expected to demonstrate academic achievement in order to obtain their certificate of completion of training (CCT). These standards are set by the Joint Committee on Surgical Training (JCST) and specialty advisory committees (SAC). The standards are not equivalent across all surgical specialties and recognise different achievements as evidence. They do not recognise changes in models of research and focus on outcomes rather than process. The Association of Surgeons in Training (ASiT) and National Research Collaborative (NRC) set out to develop progressive, consistent and flexible evidence set for academic requirements at CCT. METHODS: A modified-Delphi approach was used. An expert group consisting of representatives from the ASiT and the NRC undertook iterative review of a document proposing changes to requirements. This was circulated amongst wider stakeholders. After ten iterations, an open meeting was held to discuss these proposals. Voting on statements was performed using a 5-point Likert Scale. Each statement was voted on twice, with ≥80% of votes in agreement meaning the statement was approved. The results of this vote were used to propose core and optional academic requirements for CCT. RESULTS: Online discussion concluded after ten rounds. At the consensus meeting, statements were voted on by 25 delegates from across surgical specialties and training-grades. The group strongly favoured acquisition of 'Good Clinical Practice' training and research methodology training as CCT requirements. The group agreed that higher degrees, publications in any author position (including collaborative authorship), recruiting patients to a study or multicentre audit and presentation at a national or international meeting could be used as evidence for the purpose of CCT. The group agreed on two essential 'core' requirements (GCP and methodology training) and two of a menu of four 'additional' requirements (publication with any authorship position, presentation, recruitment of patients to a multicentre study and completion of a higher degree), which should be completed in order to attain CCT. CONCLUSION: This approach has engaged stakeholders to produce a progressive set of academic requirements for CCT, which are applicable across surgical specialties. Flexibility in requirements whilst retaining a high standard of evidence is desirable

    PHA4GE quality control contextual data tags:standardized annotations for sharing public health sequence datasets with known quality issues to facilitate testing and training

    Get PDF
    As public health laboratories expand their genomic sequencing and bioinformatics capacity for the surveillance of different pathogens, labs must carry out robust validation, training, and optimization of wet- and dry-lab procedures. Achieving these goals for algorithms, pipelines and instruments often requires that lower quality datasets be made available for analysis and comparison alongside those of higher quality. This range of data quality in reference sets can complicate the sharing of sub-optimal datasets that are vital for the community and for the reproducibility of assays. Sharing of useful, but sub-optimal datasets requires careful annotation and documentation of known issues to enable appropriate interpretation, avoid being mistaken for better quality information, and for these data (and their derivatives) to be easily identifiable in repositories. Unfortunately, there are currently no standardized attributes or mechanisms for tagging poor-quality datasets, or datasets generated for a specific purpose, to maximize their utility, searchability, accessibility and reuse. The Public Health Alliance for Genomic Epidemiology (PHA4GE) is an international community of scientists from public health, industry and academia focused on improving the reproducibility, interoperability, portability, and openness of public health bioinformatic software, skills, tools and data. To address the challenges of sharing lower quality datasets, PHA4GE has developed a set of standardized contextual data tags, namely fields and terms, that can be included in public repository submissions as a means of flagging pathogen sequence data with known quality issues, increasing their discoverability. The contextual data tags were developed through consultations with the community including input from the International Nucleotide Sequence Data Collaboration (INSDC), and have been standardized using ontologies - community-based resources for defining the tag properties and the relationships between them. The standardized tags are agnostic to the organism and the sequencing technique used and thus can be applied to data generated from any pathogen using an array of sequencing techniques. The tags can also be applied to synthetic (lab created) data. The list of standardized tags is maintained by PHA4GE and can be found at https://github.com/pha4ge/contextual_data_QC_tags. Definitions, ontology IDs, examples of use, as well as a JSON representation, are provided. The PHA4GE QC tags were tested, and are now implemented, by the FDA's GenomeTrakr laboratory network as part of its routine submission process for SARS-CoV-2 wastewater surveillance. We hope that these simple, standardized tags will help improve communication regarding quality control in public repositories, in addition to making datasets of variable quality more easily identifiable. Suggestions for additional tags can be submitted to PHA4GE via the New Term Request Form in the GitHub repository. By providing a mechanism for feedback and suggestions, we also expect that the tags will evolve with the needs of the community.</p

    Adr1 and Cat8 Mediate Coactivator Recruitment and Chromatin Remodeling at Glucose-Regulated Genes

    Get PDF
    Adr1 and Cat8 co-regulate numerous glucose-repressed genes in S. cerevisiae, presenting a unique opportunity to explore their individual roles in coactivator recruitment, chromatin remodeling, and transcription.We determined the individual contributions of Cat8 and Adr1 on the expression of a cohort of glucose-repressed genes and found three broad categories: genes that need both activators for full derepression, genes that rely mostly on Cat8 and genes that require only Adr1. Through combined expression and recruitment data, along with analysis of chromatin remodeling at two of these genes, ADH2 and FBP1, we clarified how these activators achieve this wide range of co-regulation. We find that Adr1 and Cat8 are not intrinsically different in their abilities to recruit coactivators but rather, promoter context appears to dictate which activator is responsible for recruitment to specific genes. These promoter-specific contributions are also apparent in the chromatin remodeling that accompanies derepression: ADH2 requires both Adr1 and Cat8, whereas, at FBP1, significant remodeling occurs with Cat8 alone. Although over-expression of Adr1 can compensate for loss of Cat8 at many genes in terms of both activation and chromatin remodeling, this over-expression cannot complement all of the cat8Delta phenotypes.Thus, at many of the glucose-repressed genes, Cat8 and Adr1 appear to have interchangeable roles and promoter architecture may dictate the roles of these activators

    School, peer and family relationships and adolescent substance use, subjective wellbeing and mental health symptoms in Wales: a cross sectional study

    Get PDF
    Positive relationships with family, friends and school staff are consistently linked with health and wellbeing during adolescence, though fewer studies explore how these micro-systems interact to influence adolescent health. This study tests the independent and interacting roles of family, peer and school relationships in predicting substance use, subjective wellbeing and mental health symptoms among 11–16 year olds in Wales. It presents cross-sectional analyses of the 2013 Health Behaviour in School-aged Children survey, completed by 9055 young people aged 11–16 years. Multilevel logistic regression analyses are used to test associations of family communication, family support, relationships with school staff, school peer connectedness, and support from friends, with tobacco use, cannabis use, alcohol use, subjective wellbeing and mental health symptoms. Positive relationships with family and school staff were consistently associated with better outcomes. Support from friends was associated with higher use of all substances, while higher school peer connectedness was associated with better subjective wellbeing and mental health. Better relationships with school staff were most strongly associated with positive subjective wellbeing, and fewer mental health symptoms where pupils reported less family support. Support from friends was associated with higher cannabis use and worse mental health among pupils with lower family support. Relationships with family and school staff may be important in protecting young people against substance use, and improving wellbeing and mental health. Interventions focused on student-staff relationships may be important for young people with less family support. Interventions based on peer support should be mindful of potential harmful effects for pupils with less support from family

    High Speed Two-Photon Imaging of Calcium Dynamics in Dendritic Spines: Consequences for Spine Calcium Kinetics and Buffer Capacity

    Get PDF
    Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action potentials (AP) are almost never measured due to technical limitations, but they could be crucial for synaptic plasticity. With high-speed, precisely-targeted, two-photon point imaging we measured both calcium rise and decay kinetics in spines and secondary dendrites in neocortical pyramidal neurons. We found that both rise and decay kinetics of changes in calcium-indicator fluorescence are about twice as fast in spines. During AP trains, spine calcium changes follow each AP, but not in dendrites. Apart from the higher surface-to-volume ratio (SVR), we observed that neocortical dendritic spines have a markedly smaller endogenous buffer capacity with respect to their parental dendrites. Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity

    Identification and Clonal Characterisation of a Progenitor Cell Sub-Population in Normal Human Articular Cartilage

    Get PDF
    Background: Articular cartilage displays a poor repair capacity. The aim of cell-based therapies for cartilage defects is to repair damaged joint surfaces with a functional replacement tissue. Currently, chondrocytes removed from a healthy region of the cartilage are used but they are unable to retain their phenotype in expanded culture. The resulting repair tissue is fibrocartilaginous rather than hyaline, potentially compromising long-term repair. Mesenchymal stem cells, particularly bone marrow stromal cells (BMSC), are of interest for cartilage repair due to their inherent replicative potential. However, chondrocyte differentiated BMSCs display an endochondral phenotype, that is, can terminally differentiate and form a calcified matrix, leading to failure in long-term defect repair. Here, we investigate the isolation and characterisation of a human cartilage progenitor population that is resident within permanent adult articular cartilage. Methods and Findings: Human articular cartilage samples were digested and clonal populations isolated using a differential adhesion assay to fibronectin. Clonal cell lines were expanded in growth media to high population doublings and karyotype analysis performed. We present data to show that this cell population demonstrates a restricted differential potential during chondrogenic induction in a 3D pellet culture system. Furthermore, evidence of high telomerase activity and maintenance of telomere length, characteristic of a mesenchymal stem cell population, were observed in this clonal cell population. Lastly, as proof of principle, we carried out a pilot repair study in a goat in vivo model demonstrating the ability of goat cartilage progenitors to form a cartilage-like repair tissue in a chondral defect. Conclusions: In conclusion, we propose that we have identified and characterised a novel cartilage progenitor population resident in human articular cartilage which will greatly benefit future cell-based cartilage repair therapies due to its ability to maintain chondrogenicity upon extensive expansion unlike full-depth chondrocytes that lose this ability at only seven population doublings

    Academic requirements for certificate of completion of training in surgical training: consensus recommendations from the Association of Surgeons in Training/National Research Collaborative Consensus Group

    Get PDF
    Background Surgical trainees are expected to demonstrate academic achievement in order to obtain their certificate of completion of training (CCT). These standards are set by the Joint Committee on Surgical Training (JCST) and specialty advisory committees (SAC). The standards are not equivalent across all surgical specialties and recognise different achievements as evidence. They do not recognise changes in models of research and focus on outcomes rather than process. The Association of Surgeons in Training (ASiT) and National Research Collaborative (NRC) set out to develop progressive, consistent and flexible evidence set for academic requirements at CCT. Methods A modified-Delphi approach was used. An expert group consisting of representatives from the ASiT and the NRC undertook iterative review of a document proposing changes to requirements. This was circulated amongst wider stakeholders. After ten iterations, an open meeting was held to discuss these proposals. Voting on statements was performed using a 5-point Likert Scale. Each statement was voted on twice, with ≥80% of votes in agreement meaning the statement was approved. The results of this vote were used to propose core and optional academic requirements for CCT. Results Online discussion concluded after ten rounds. At the consensus meeting, statements were voted on by 25 delegates from across surgical specialties and training-grades. The group strongly favoured acquisition of ‘Good Clinical Practice’ training and research methodology training as CCT requirements. The group agreed that higher degrees, publications in any author position (including collaborative authorship), recruiting patients to a study or multicentre audit and presentation at a national or international meeting could be used as evidence for the purpose of CCT. The group agreed on two essential ‘core’ requirements (GCP and methodology training) and two of a menu of four ‘additional’ requirements (publication with any authorship position, presentation, recruitment of patients to a multicentre study and completion of a higher degree), which should be completed in order to attain CCT. Conclusion This approach has engaged stakeholders to produce a progressive set of academic requirements for CCT, which are applicable across surgical specialties. Flexibility in requirements whilst retaining a high standard of evidence is desirable

    3D finite element electrical model of larval zebrafish ECG signals

    Get PDF
    Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace’s equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions
    corecore