614 research outputs found

    Magnetism in the dilute Kondo lattice model

    Get PDF
    The one dimensional dilute Kondo lattice model is investigated by means of bosonization for different dilution patterns of the array of impurity spins. The physical picture is very different if a commensurate or incommensurate doping of the impurity spins is considered. For the commensurate case, the obtained phase diagram is verified using a non-Abelian density-matrix renormalization-group algorithm. The paramagnetic phase widens at the expense of the ferromagnetic phase as the ff-spins are diluted. For the incommensurate case, antiferromagnetism is found at low doping, which distinguishes the dilute Kondo lattice model from the standard Kondo lattice model.Comment: 11 pages, 2 figure

    Two-Higgs-doublet model from the group-theoretic perspective

    Full text link
    In the two-Higgs-doublet model, different Higgs doublets can be viewed as components of a generic "hyperspinor". We decompose the Higgs potential of this model into irreducible representations of the SU(2) group of transformations of this hyperspinor. We discuss invariant combinations of the Higgs potential parameters lambda_i that arise in this decomposition and provide simple and concise sets of conditions for the hidden Z_2-symmetry, Peccei-Quinn symmetry, and explicit CP-conservation in 2HDM. We show that some results obtained previously by brute-force calculations are reduced to simple linear algebraic statements in our approach.Comment: 10 pages; v3: expanded section on consequences, added subsections on CP-conservation, PQ symmetry, RG evolution; v4: misprints corrected; to appear in Physics Letters

    Theory of Ferromagnetism in Diluted Magnetic Semiconductor Quantum Wells

    Full text link
    We present a mean field theory of ferromagnetism in diluted magnetic semiconductor quantum wells. When subband mixing due to exchange interactions between quantum well free carriers and magnetic impurities is neglected, analytic result can be obtained for the dependence of the critical temperature and the spontaneous magnetization on the distribution of magnetic impurities and the quantum well width. The validity of this approximate theory has been tested by comparing its predictions with those from numerical self-consistent field calculations. Interactions among free carriers, accounted for using the local-spin-density approximation, substantially enhance the critical temperature. We demonstrate that an external bias potential can tune the critical temperature through a wide range.Comment: 4 pages, 3 figures, submitted to Phys. Rev.

    Calculation of Effective Coulomb Interaction for Pr3+Pr^{3+}, U4+U^{4+}, and UPt3UPt_3

    Full text link
    In this paper, the Slater integrals for a screened Coulomb interaction of the the Yukawa form are calculated and by fitting the Thomas-Fermi wavevector, good agreement is obtained with experiment for the multiplet spectra of Pr3+Pr^{3+} and U4+U^{4+} ions. Moreover, a predicted multiplet spectrum for the heavy fermion superconductor UPt3UPt_3 is shown with a calculated Coulomb U of 1.6 eV. These effective Coulomb interactions, which are quite simple to calculate, should be useful inputs to further many-body calculations in correlated electron metals.Comment: 8 pages, revtex, 3 uuencoded postscript figure

    Astroclimatic Characterization of Vallecitos: A candidate site for the Cherenkov Telescope Array at San Pedro Martir

    Full text link
    We conducted an 18 month long study of the weather conditions of the Vallecitos, a proposed site in Mexico to harbor the northern array of the Cherenkov Telescope Array (CTA). It is located in Sierra de San Pedro Martir (SPM) a few kilometers away from Observatorio Astron\'omico Nacional. The study is based on data collected by the ATMOSCOPE, a multi-sensor instrument measuring the weather and sky conditions, which was commissioned and built by the CTA Consortium. Additionally, we compare the weather conditions of the optical observatory at SPM to the Vallecitos regarding temperature, humidity, and wind distributions. It appears that the excellent conditions at the optical observatory benefit from the presence of microclimate established in the Vallecitos.Comment: 16 pages, 16 figures, Publication of the Astronomical Society of the Pacific, accepte

    Velopharyngeal stenosis, a late complication of radiotherapy

    Get PDF
    Choanal stenosis has recently been recognized as a late complication of radiation therapy for nasopharyngeal carcinoma. The management of velopharyngeal stenosis is challenging with high risk of restenosis. We report a case of velopharyngeal stenosis post-radiotherapy and illustrated the use of mitomycin-C to prevent restenosis. Mitomycin-C application has being shown useful adjunct to surgical technique in managing nasopharyngeal stenosis for surgeons

    Higher codimension braneworlds from intersecting branes

    Full text link
    We study the matching conditions of intersecting brane worlds in Lovelock gravity in arbitrary dimension. We show that intersecting various codimension 1 and/or codimension 2 branes one can find solutions that represent energy-momentum densities localized in the intersection, providing thus the first examples of infinitesimally thin higher codimension braneworlds that are free of singularities and where the backreaction of the brane in the background is fully taken into account.Comment: 20 pages; v2. references and comments added to match the published versio

    Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic Oscillator Chains

    Full text link
    We examine the thermal conductivity and bulk viscosity of a one-dimensional (1D) chain of particles with cubic-plus-quartic interparticle potentials and no on-site potentials. This system is equivalent to the FPU-alpha beta system in a subset of its parameter space. We identify three distinct frequency regimes which we call the hydrodynamic regime, the perturbative regime and the collisionless regime. In the lowest frequency regime (the hydrodynamic regime) heat is transported ballistically by long wavelength sound modes. The model that we use to describe this behaviour predicts that as the frequency goes to zero the frequency dependent bulk viscosity and the frequency dependent thermal conductivity should diverge with the same power law dependence on frequency. Thus, we can define the bulk Prandtl number as the ratio of the bulk viscosity to the thermal conductivity (with suitable prefactors to render it dimensionless). This dimensionless ratio should approach a constant value as frequency goes to zero. We use mode-coupling theory to predict the zero frequency limit. Values of the bulk Prandtl number from simulations are in agreement with these predictions over a wide range of system parameters. In the middle frequency regime, which we call the perturbative regime, heat is transported by sound modes which are damped by four-phonon processes. We call the highest frequency regime the collisionless regime since at these frequencies the observing times are much shorter than the characteristic relaxation times of phonons. The perturbative and collisionless regimes are discussed in detail in the appendices.Comment: Latex with references in .bib file. 36 pages, 8 figures. Submitted to J. Stat. Phys. on Sept. 2

    Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies

    Full text link
    Delone sets of finite local complexity in Euclidean space are investigated. We show that such a set has patch counting and topological entropy 0 if it has uniform cluster frequencies and is pure point diffractive. We also note that the patch counting entropy is 0 whenever the repetitivity function satisfies a certain growth restriction.Comment: 16 pages; revised and slightly expanded versio

    In-plane fluxon in layered superconductors with arbitrary number of layers

    Full text link
    I derive an approximate analytic solution for the in-plane vortex (fluxon) in layered superconductors and stacked Josephson junctions (SJJ's) with arbitrary number of layers. The validity of the solution is verified by numerical simulation. It is shown that in SJJ's with large number of thin layers, phase/current and magnetic field of the fluxon are decoupled from each other. The variation of phase/current is confined within the Josephson penetration depth, λJ\lambda_J, along the layers, while magnetic field decays at the effective London penetration depth, λc≫λJ\lambda_c \gg \lambda_J. For comparison with real high-TcT_c superconducting samples, large scale numerical simulations with up to 600 SJJ's and with in-plane length up to 4000 λJ\lambda_J%, are presented. It is shown, that the most striking feature of the fluxon is a Josephson core, manifesting itself as a sharp peak in magnetic induction at the fluxon center.Comment: 4 pages, 4 figures. Was presented in part at the First Euroconference on Vortex Matter in Superconductors (Crete, September 1999
    • …
    corecore