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Magnetism in the dilute Kondo lattice model
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The one-dimensional dilute Kondo lattice model is investigated by means of bosonization for different
dilution patterns of the array of impurity spins. The physical picture is very different if a commensurate or
incommensurate doping of the impurity spins is considered. For the commensurate case, the obtained phase
diagram is vertified using a non-Abelian density-matrix renormalization-group algorithm. The paramagnetic
phase widens at the expense of the ferromagnetic phase fspins are diluted. For the incommensurate case,
short-range antiferromagnetic correlations are found to dominate at low doping, which distinguishes the dilute
Kondo lattice model from the standard Kondo lattice model.
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Heavy fermion systems have been of great theoretical inwherelL is the number of sites antd>0 is the conduction
terest since their discovery some 20 years agbe central  electron hopping. We measure the Kondo couplinig units
problem posed by heavy fermion materials is to understandf the hoppingt. We denote byN; (n;=N¢/L) the number
the interaction between an array of localized momegés-  (concentration of impurities and byN, (n.=N./L) the
erally f electrons in lanthanide or actinide iorend conduc-  nymber (concentration of conduction electrons. The con-
tion electrong(generallys or d band. This situation is well  straint N;<L is imposed byP, which is an operator that
described by an antiferromagnetically coupled Ko”do'typeprojects out a predetermined set fofpins. S are spin 1/2

model. ; ;
The solution of Kondo-type models is well understood inopleratorsT for the Iogallzed spins, g.gf, af“’ S
=352,4'Ci 04 4 Ci o With o the Pauli spin matrices and

two limiting cases; the single-impurity linfitwhich can be ’ R )
reduced to a one-dimensional problem and solved via Beth@i,«+ Ci,c the electron creation and annihilation site opera-
ansatz, and second the Kondo lattice mod@lM ), which ~ tors.
was solved via bosonizatidnand numerous numerical ~ We investigate the behavior of the DKLM both by an
approachés in one dimension for half filing and partial analytical approach, based on a standard bosonization
conduction-band filling. For half filling the results indicate scheme, and by numerical calculations. The latter were per-
the existence of a finite spin and charge gap. Accordingly iformed using the newly developed non-Abelian density-
this case the Kondo lattice model is an insulator with well-matrix renormalization-grougDMRG) algorithm! which
defined massive solitonic excitations of the spin sector.  preserves the total spin and pseudospin symmetry. This
For partial conduction-band filling, the conduction elec-choice of basis first of all greatly facilitates the observation
trons form a Luttinger liquid, with spin and charge of magnetic phases and second it gives a dramatic perfor-
separation. The localized spins, however, exhibit ferromag- mance improvement compared to the standard DMRG basis.
netism, due to an effective double-exchange couplihghe The bosonization we use takes the standard appfdsch
double exchange is driving the system toward ferromagfirst decomposing the on-site operators into Dirac fields, with
netism, while the fluctuations generated by Kondo singletgpinor components= + (otherwise known as the right;
compete against this tendency. As a consequence, the para- = and left, 7=—, movers: Cy,~=.C, .
magnetic to ferromagnetic phase transition is of the quantura- s, gikexy _ (x), where ke=mn./2 and we consider the

order-disorder type, typical to models with an effective ran-jattice spacing to be unity. Next we bosonize the Dirac fields

dom field® However, for small Kondo coupling and close to with ¥__=exp(®, )27\, where 1k is the ultraviolet
half filing a Ruderman-Kittel-Kasuya-Yosida liquid state . ioff For the scalar Bose fieldé

) X o ) - (X) and its canonical
and polaronic regime are always presérfor additional conjugate momentall, ,(x), ® ('X):fx dx'T1, ,(x')
properties, see earlier reviews of Ref. 6. A - AN

T : . we use the standard Mandelstam representatighich in-
Beyond these two solvable limits, no rigorous results exis

: . ! XISt oduces a momentum cutoff functioh (k) = exp(—\|k|/2)
for the_ intermediate cases, where the ””mb‘?f of IMPUNtieY;a the Fourier transforms. Thus, the electron field can be
are neither one nor equal to the number of sites. This is th ’

. . ?epresented in terms of collective density operators which
focus of our study. We concentrate on the one—d|menS|onaéatisfy Bose commutation relations

case, and start from the Kondo lattice limit introducing im-

purity spin holes, that is, we will be dealing with a dilute Crx,o~=XQi TKex)expi{8,(x) + 7¢,(X)
Kondo lattice mode(DKLM ):
. ) 01 0,() + 7, ()1}/2, @
H=—t t e +He)+HID PSP, (1 where the Bose fieldsfor both v=p,o) are defined by
i;l,a (CloCiragtHC) 21 S-S @ &,10,=i(7IN)Z . 0e™ [ v, (k) +v_(k)]A(K)/k, whereg,
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are the number fields and, the current fields. The charge J2

(holon) and spin(spinon number fluctuations are defined as Her=— —— E SO ZSZSf
p(K)=24p.,(K), and o (K)=3,0p,,(k). This type of 2mvell M=)

Bose representation provides a nonperturbative description J

of the conduction electrons in terms of holons and spiffons. + py. Z {cogK(i)]+cod 2kri]}S"

We will neglect for the moment all the rapidly oscillating

(umklapp terms. These will give a contribution only at half J

filling, i.e., nc=n;, and will be analyzed later on. Thus, the TN 4 sSin K (i)]sin 2kgi ]S7. (4)
bosonized form of DKLM is

K(j) originates from the unitary transformatioK(j)
_Ur 2, L2 =i(2m0E) 21/ [ holi), 0,(1")1S, . with [hu(j),0,(")]
H= A % () +[oxbu(DIF =imsgn(—j'). Thus,K(j) cou]nts all thesz’s to the right
3 3 of the sitej and subtracts from those to the left jofK(j)
o ez Y - =(J/2vE) = (S, ;,—S _.)). This term gives the crucial
" 2m ; ool IS+ 4m\ 2 teod ()] difference kj)etvdeén KIJ_I\/JI and DKLM, as will be explained
_ _ io ()t later on. The most important term in E@) is the first one,
+C0g 2Kej + ¢, (1) 11 (e VS +H.c) which clearly shows that a ferromagnetic coupling emerges
3 for DKLM. This coupling is non-negligible foN.<N; and
— —— > sin¢,(j)]sin 2Kgj +¢,())1S;.  (8) i—j=\ and its strength will decrease with increasing dis-
27\ 7] tance between impurity spins.
For N.<Ns, the physical picture given by E) will be
. . crucially different if the lattice of impurity spins contains
This equation has the same form as for a standard Kondg,ymensurate or incommensurate array of holes. Hence, we
!atuce? except that(i) we have to keep+ in mind that the 4na1y7e these two cases separately. If we have a commensu-
impurity spin, i.e., terms containin§}, S/, andS;, con-  rate doping of the impurity spins, then we can approximate
tributes only if there is arf spin at sitej, and(ii) the even  the ferromagnetic term in the usual way by takirgl/n;
cutoff function A(k), defined in Eq.(2), satisfying A(k)  for the shortest average distance betweén spins:

~1 for [k <1/ and A(k)~0 otherwise, is needed in the {J2n?\/[27% (14NN ]IS /S, ), . Lattice sites

Bose fields to ensure thqt d.elocglized con<_juction electrpr\ﬁ,hich are not occupied bf/spins are inert and do not con-
are described. Delocalization is essential to describgipyte to the ferromagnetic phase. This was verified by
ferromagnetisri’ since ferromagnetism in the Kondo lattice pMRG: the calculated-f spin correlation functions behave
models is due to the double exchange, which only requiregimilarly as those of the normal KLM. THestructure factor
that No<Nj . *° has the usual peak &f7=N./N; for low J, hence in the

In this situation each electron has on average more thasommensurate case the DKLM behaves similar to the stan-
one localized spin to screen, and since hopping between latard KLM model.
calized spins is energetically most favorable for electrons To understand the behavior of the second and to third
which preserve their spin as they hop, this tends to align théerm from Eq.(4), we notice thaK(i) is vanishingly small
underlying localized spin¥ This also means that double ex- for the commensurate case, as the numbéirapurity spins
change will vanish if the distance between impurity spins isto the left and to the right of a given sités the same. So the
larger than\. At lengths beyonad the electrons will behave effective Hamiltonian will reduce to the random transverse
as collective density fluctuations, as usual in onedfield Ising model, as in the KLM.The randomness is gen-
dimensional systenfstHence X measures the effective range erated by 1+cos(X)] at large distances and it is driven by

of the double exchange, and, in principle, it is a function of2 cosine distribution, similar to spin glasségo determine
J, n,, andn;. the phase transition we need the dependenxe

The most straightforward method to determine an order={(J:Nc.N¢), which however is very difficult to determine,
ing of the localized spins is by applying a unitary transfor-and as such we use the low density vakue y2/J close to

criticality, similar to previous work$!? In this way we ob-

. ~ _ S _S . .
mation H=e>He >. We choose the transformation which tain the criical phase transiion line to bel

changes to a basis of states in which the conduction-electron 71-sin(ﬂ-nC/Z)/[l—wsin(qrnC/Z)/nf], which represents a

spin d?grees of freedom are coupled directly to the IOCaIize‘fﬂuantum order-disorder transition with variable exponénts.
spins S=i(J/2mvg)260,(j)S;. We perform the unitary However, this ferromagnetic phase disappears for larger dis-
transformation up to infinite order, so there is not any artifi-tances between impurities because, as mentioned earlier, the
cial truncation error generatédtbr details see Ref.)3In the  double-exchange interaction vanishes if the average distance
new transformed basis the double-exchange interaction leatbetween impurity spins, b4, is larger than\. This is very

ing to ferromagnetism is clearly exhibited and we obtain themportant because it ensures that the single-impurity limit
effective Hamiltonian for the localized spins: n¢— 0 is free of ferromagnetism, as it should be.
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The incommensurate case is more difficult than the comsymmetry sectors, a technique which is not available when
mensurate case. The reason is that in the low concentratiarsing just thez-component of spin.
limit the properties of DKLM will be very much dependent  For theN.<N; case, we have investigated several com-
on the random distribution dfspins. We may observe phase mensurate dilution patterns of the form “0Q0f00f . .. ”;
separation or clusterization processes in this case. In thi§ fOfOf0of ... " and “0 ffOffOff ... " in a 64-site long
limit, where the average distance between impurities is verghain. While in theN.>N; limit we have studied the
large, then the single-impurfyapproximation seems natural. =0.8 localized spin filling(to be in accordance with the
However, if we look at small doping dfelectrons only, then ~bosonization requirement of low dilutipron a 80-site long
the main difference compared to the commensurate limiPKLM chain, ie., we investigated the pattern

studied previously is that thK(j) term, in Eq.(4), is not ‘O fFFfOFFFff. .7 ) ]
negligible anymore. The impurity spins are no longer These patterns were selected in such a way that the chain

equally distributed to the left and right of a given sjte middle-point refl_ection symmetry was preserved to gcceler-
However, for small doping of electrons the main contribu- &€ the calculations. There was only one exception: the

tion to K(j), namely, toS:(SZ..,— S~ ), is given by the “0 fOf0f” chain has an impurity in the middle,
few numge)r of uncgm eés;t@ee) s] ]#15) g g HencZ we “0 fOff0f0,” but its effect is rather small compared to our
P PINS, Stree- ' final errors and so it was neglected. An important technique

write szreemzj’(sz_+j’_SJ'ij’)_ZZEi’J’>J'SjZ’_EJ"SjZ" NOt- for performing efficient DMRG calculations is the wave-
ing that *2iS*=exp(*inS), we have K(j) function transformation to provide a good initial guess vector
~(J2vg)exp(AnZ; ji-;S). HenceK(j)~(—1)!(J/2vg),  from one iteration to the next, first introduced by WHite.
which gives rise to a staggered field. The properties of EqHowever White's transformation does not apply to the case
(4) are then given by the staggered field Ising model, whiclhof reflection-symmetric blocks. This is because the environ-
gives an antiferromagnetic ordering. This antiferromagnetianent basis in the wave-function transformation is always
ordering of the impurity spins represents a new element inaken from theprevious sweep, whereas use of reflection
DKLM compared to the Kondo lattice. This corresponds tosymmetry demands that the environment block is the spatial
the soliton lattice obtained by Schlottmann in a dynamicaleflection of the system block obtained from tkarrent
mean-field treatment of the three-dimensional dilute Kondasweep. The correct transformation is only obtained after de-
lattice 13 termining the overlap between the previous and current basis

Similar behavior also occurs above half filling, i.&;  vectors. This can be formulated as a minimization problem
>N;, where double exchangas shown previousjydoes and solved via a singular-value decomposition. This calcula-
not appear. But bosonization still works: the effective Hamil-tion is presented in the Appendix.
tonian reduces to the second and third terms of(Eg.from In the DMRG calculations careful error and convergence
which the most dominant term, for low doping of impurity analyses were used, and we extrapolated the energy linearly
spins, as in the case described previously, is a stagd&red to zero truncation errofwe saw no quadratic terms large
field. As the first term in Eq(4) is missing in this case, the enough to affect the fit For each given dilution pattern,
only fluctuation which can destroy a locked staggered ordefilling N./N¢, and interaction constart, we used several
is S. For largeJ (4=<J) the staggered order wins, while for DMRG sweeps of between 200 and 400(8psymmetric
smaller values ofl the systems will be disordered. states!

As we approach half filling from both sides, the bosoniza- For N.<N; ferromagnetism appears at largealues, see
tion approach breaks down as the strongly oscillatimgp-  Fig. 1. A point on the phase diagram shown in Fig. 1 is
klapp fields start dominating. The DKLM will undergo a judged to be ferromagnetic if the extrapolated energy of the
metal-insulator transition as in a standard quantum sineSpin Smax run is lower than the spin zero energy. This energy
Gordon modét* by dynamical mass generation and a spindifference to the spin-singlet excited state can be calculated
gap will also appear. This can be understood easily, becaustrectly using the SO(4) basis set of the non-Abelian
the half-filled DKLM is equivalent to the quarter-filled peri- DMRG. The phase transition line can be determined with
odic Anderson model, which has an antiferromagnetichigh accuracy if one plots the energy gap between the spin
order!? The only difference from the Kondo lattice is that the Smax @nd spin zero states as a functionJefthe gap rapidly
massive solitons obtained for DKLM are of Su, Schrieffer,decreases as the transition is approached. It should be men-
and Heeger typ& However, in the case of DKLM the pres- tioned that, as well as in the standard Kondo Casere also
ence of the spin gap will cause short-range antiferromagnetiexists additional ferromagnetic phases inside the paramag-
correlations to appear rather than a true long-range order. netic region for dilute Kondo chains.

To confirm the previously obtained magnetic phases, we In the opposite limit, i.e.N.>N¢, we have confirmed the
performed non-Abelian DMRGRef. 7 analysis of the existence of short antiferromagnetic fluctuations by calculat-
DKLM model in the commensurate case, for both tdg  ing the spin structure factdg(k), the Fourier transform of
<N; andN.>N;¢, where ferromagnetism and antiferromag- S(x)=(S{S;), wherex is measured in units of the lattice
netism, respectively, exist. The SO(4) symmetry of theconstant. As can be seen in Fig. 2, for smhthe peak in
Kondo lattice survives into the dilute model, thus we useS(k) is at 2kg (similar to KLM, Ref. 4, i.e., the DKLM is a
basis states labeled by the total spin and total pseudospidisordered paramagnet. The dominari: 2backscattering
This allows us to determine the phase diagram by directlyprocesses are manifest of a system of free localized spins
measuring the energy crossover of the polarized and singleimbedded in effective fields determined by conduction-
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FIG. 1. The phase diagram of the dilute Kondo model in differ- 0.5
ent commensurate filling cases fdg<<N; . Legend shows patterns
of dilution. Open circles correspond to the standard KLM model.
The system of a given dilution pattern is ferromagnetic above the0.75
corresponding solid line and paramagnetic below.

electron scattering. As we increadea distinctive peak at s
k=7 appeargsee Fig. 2, thus DKLM exhibits an antiferro-
magnetic signal. However, this signal is broadened by the
presence of the spin and charge gaps of the conduction ele®65 | 02 04 06
trons, as argued earlier. Simultaneously with the emergenci

of thek= 7 peak, the Rr peak starts to broaden, and as we kin

further increase) decreases in strength to the point that it FIG. 2. TypicalJ dependences of the conduction electron spin

vanishes. ) . . . L structure factorS(k) for n;=0.8 and n.=1, continuous,n.
To further investigate this antiferromagnetic signal we _g 975 dotted n.=0.95, dashedn.=0.925, long dashed, and
performed an additional DMRG calculation fof=0.8 and ~0.90, dot-dashed curves.

electron fillingn,=0.9 atJ/t=3, with 1000 states kept, but

treating the localized spins as separate lattice sites. This sag;,ch smaller than in the usual KLM. Indeed. direct mea-
rifices some accuracy for a significant improvement in effi-g ,.ament of the gaps has proven problematic: even for rela-
ciency. Due to the matrix product structure of the wave f”nc'tively small systems, hence there is a possibility of power-
tion obtained by DMRG, correlation functions inevitably |, decay of the spin-spin correlation function for large
decay exponentially at long distancésBy choosing larger enough distances with the vanishing of the spin gap.
system sizesthe largest studied size was=600) that are In conclusion, we have studied the dilute Kondo lattice
long compared with the *truncation length” imposed by the 4 4e| in one dimension both numerically, using DMRG, and

DMRG, the effect of open boundaries is minimized. Thus the, 5y tically, with a standard bosonization approach. We have
relevant length parameter for the calculation is not the sySgarived an effective Hamiltonian for thfespins, which ac-

tem size itself, but rather the truncation length of the DMRG.cq (s for the appearance of a ferromagnetic phase seen with
This makes finite-size scaling analysis problematic, howevel ~qmmensurate dilution pattern of the impurity spin array.

we believe that within the accuracy of the overall calcula-the paramagnetic-ferromagnetic phase transition shifts to
tion, the obtained wave function is sufficiently close to thehigher couplingd values as thé spins of the chain are di-

thermodynamic limit that such analysis would not provide| ieq in agreement with the numerical DMRG calculation.

additional information. _ _ We have also shown that within the paramagnetic phase of
The obtained wave function agrees with the result frompne incommensurate dilution limit or above half filling, i.e.,

Fhe shorter length chaini namely, the m_ain feature is a_pe%c>Nf for low doping of impurity spins, strong short-range
in the structure factor &=, corresponding to exponential gniiterromagnetic correlations are found. This distinguishes

decay with a correlation length of 238 lattice spacings, see the dilute Kondo lattice model from the standard Kondo lat-
Fig. 3. Here in comparison to the exponential de¢am-  tice model.

tinuous lineg we also show a power-law decagashed

curves. The plot clearly shows that the best fit of the data is

an exponential function. Thus the antiferromagnetic correla- ACKNOWLEDGMENTS

tion length is always finite, which seems to indicate that this Work in Australia was supported by the Australian Re-
regime is a continuation of the spin liquid state of the half-search Council and Department of Industry, Science and Re-
filled Kondo lattice!” However, the spin and charge gaps aresources Work in Sweden was supported by the Swedish
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S I - I - I - basis sets, thereby allowing the wave function to be deter-
i mined in theb basis only, as required for the DMRG algo-
rithm when reflection symmetry is used.

The required transformation maximizes the overlap be-
tween the wave function at the current and the wave function
at the previous sweep. The dimension of {a¢ and |b)
basis setsN, and N,, respectively, are not necessarily the
same, thud is not in general a square matrix.

We consider the casd,<N,, but the proof forlN,>N,
proceeds similarly. The rows df can be constrained to be
orthogonal and normalized via a set of Lagrange multipliers
Naral2, represented as a matrix which can be taken to be
symmetric. Thus the maximization problem is

In S(x)

Npr
F= 2 d’baTba"r//aa’_E % ; (ToraTha=™ Gprb)-

a,a’,b b’'b
(A3)
Taking the partial derivative with respectTg, , one obtains

FIG. 3. The logarithm of the spin-spin correlation functigfx)

for the f (squares and c (circles electrons fordJ=3, n;=0.8, n, ) ) )
=0.9, andL=600 with 1000 states kept. The continuous lines are 1 N€ solution ofdF/dTz,=0 gives the desired transforma-

the best linear fit, while the dashed lines are the best logarithmic fittion. Switching to matrix form
OUT=AT, (A5)

Natural Science Research CouncWetenskapsiey, the  where A=(\p,) is anNpx N, symmetric matrix,® is an
Swedish Foundation for International Cooperation in Re-N,x N, matrix, ¥ is an N,XN, matrix, andT is an N,
search and Higher Educatiof8TINT), and the Swedish x B, row-orthogonal matrix.

Foundation for Strategic Resear@®SH. Work in The Neth- We now perform the singular-value decomposition of the
erlands was supported by the Foundation for Fundamentaft-hand side of Eq(A5), giving

Research on MattefFOM) and The Netherlands Organiza- : N

tion for Scientific ResearciNWO). Most of the numerical d¥'=UDV’, (A6)
calculations were performed at National Facility of the Aus-, hare U is an N, X N, orthogonal matrixD is anN,x N,

tralian Partnership for Advanced Computing. diagonal matrix containing the singular values, afdis an
N, X N, row-orthogonal matrix. The singular-value decom-

JF
T = g bpathaa— Eb: NgbTha- (A4)

APPENDIX position of the right-hand side of EGAS5) is performed for
In this appendix, the basis transformation required to ob/A @ndT separately, giving
tain an initial wave function at the midpoint of a reflection- AT=UD W'XD;VT, (A7)

symmetric DMRG calculation is derived. At the midpoint,

the wave function can be written in matrix form as a tensomwhereD , is anNyX Ny, diagonal matrix containing the sin-
product of left and right basis states, first for the wave func-gular values ofA, W' is a Npx Ny, orthogonal matrixX is

tion at the previous sweep, anNp X N, orthogonal matrix, an® is anNy X N, diagonal
matrix containing the singular values @f Now A is sym-
metric, therefore the singular-value decomposition reduces to
a similarity transformation, givingy=U. But T is row or-

, ) , thogonal, therefore the singular values are identically equal
where the left-block basis statgs ) are the spatial reflection to 1, givingD7=1. Thus the singular values o must co-

of the right-block basis statéa). The wave function, at the incide with the sinaular values abW¥' imolving D =D
end of the standard transformatithis given in a mixed 15 J  MPYING DA =1

basis as

(W)=2 (aa)la’)la), (A1)

dYT'=UDV'=UDUTXVT, (A8)

@)= (¢pa)|b)la), (A2)  which implies thatX=U. Thus, from the singular-value de-

ba composition ofT,

which is the tensor product of the leftsystem block basis B T

of the current sweep with the rightenvironmenk block ba- T=XDV'=UV, (A9)

sis of the previous sweep. The task is to find a transformatiowhereU andV" are given by the decomposition &% in
T=(tpa) Which gives the correspondence between the twdeq. (A6).
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