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Magnetism in the dilute Kondo lattice model
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The one-dimensional dilute Kondo lattice model is investigated by means of bosonization for different
dilution patterns of the array of impurity spins. The physical picture is very different if a commensurate or
incommensurate doping of the impurity spins is considered. For the commensurate case, the obtained phase
diagram is vertified using a non-Abelian density-matrix renormalization-group algorithm. The paramagnetic
phase widens at the expense of the ferromagnetic phase as thef spins are diluted. For the incommensurate case,
short-range antiferromagnetic correlations are found to dominate at low doping, which distinguishes the dilute
Kondo lattice model from the standard Kondo lattice model.
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Heavy fermion systems have been of great theoretica
terest since their discovery some 20 years ago.1 The central
problem posed by heavy fermion materials is to underst
the interaction between an array of localized moments~gen-
erally f electrons in lanthanide or actinide ions! and conduc-
tion electrons~generallys or d band!. This situation is well
described by an antiferromagnetically coupled Kondo-ty
model.

The solution of Kondo-type models is well understood
two limiting cases; the single-impurity limit2 which can be
reduced to a one-dimensional problem and solved via Be
ansatz, and second the Kondo lattice model~KLM !, which
was solved via bosonization3 and numerous numerica
approaches4,5 in one dimension for half filling and partia
conduction-band filling. For half filling the results indica
the existence of a finite spin and charge gap. Accordingly
this case the Kondo lattice model is an insulator with we
defined massive solitonic excitations of the spin sector.

For partial conduction-band filling, the conduction ele
trons form a Luttinger liquid, with spin and charg
separation.5 The localized spins, however, exhibit ferroma
netism, due to an effective double-exchange coupling.3,4 The
double exchange is driving the system toward ferrom
netism, while the fluctuations generated by Kondo sing
compete against this tendency. As a consequence, the
magnetic to ferromagnetic phase transition is of the quan
order-disorder type, typical to models with an effective ra
dom field.3 However, for small Kondo coupling and close
half filling a Ruderman-Kittel-Kasuya-Yosida liquid sta
and polaronic regime are always present.4 For additional
properties, see earlier reviews of Ref. 6.

Beyond these two solvable limits, no rigorous results ex
for the intermediate cases, where the number of impuri
are neither one nor equal to the number of sites. This is
focus of our study. We concentrate on the one-dimensio
case, and start from the Kondo lattice limit introducing im
purity spin holes, that is, we will be dealing with a dilu
Kondo lattice model~DKLM !:

H52t (
i 51,s

L21

~ci ,s
† ci 11,s1H.c.!1J(

i 51

L

PSi
c
•SiP, ~1!
0163-1829/2004/69~17!/174425~6!/$22.50 69 1744
-

d

e

e

n
-

-

-
ts
ra-
m
-

t
s
e
al

whereL is the number of sites andt.0 is the conduction
electron hopping. We measure the Kondo couplingJ in units
of the hoppingt. We denote byNf (nf5Nf /L) the number
~concentration! of impurities and byNc (nc5Nc /L) the
number ~concentration! of conduction electrons. The con
straint Nf<L is imposed byP, which is an operator tha
projects out a predetermined set off spins.Si are spin 1/2
operators for the localized spins, e.g.,f, and Si

c

5 1
2 (s,s8ci ,s

† ss,s8ci ,s8 with s the Pauli spin matrices an
ci ,s

† , ci ,s the electron creation and annihilation site ope
tors.

We investigate the behavior of the DKLM both by a
analytical approach, based on a standard bosoniza
scheme, and by numerical calculations. The latter were
formed using the newly developed non-Abelian densi
matrix renormalization-group~DMRG! algorithm,7 which
preserves the total spin and pseudospin symmetry. T
choice of basis first of all greatly facilitates the observati
of magnetic phases and second it gives a dramatic pe
mance improvement compared to the standard DMRG ba

The bosonization we use takes the standard approach8 by
first decomposing the on-site operators into Dirac fields, w
spinor componentst56 ~otherwise known as the right,t
51, and left, t52, movers!: cx,s'(tct,x,s
[(te

ikFxCt,s(x), where kF5pnc/2 and we consider the
lattice spacing to be unity. Next we bosonize the Dirac fie
with Ct,s5exp(iFt,s)/A2pl, where 1/l is the ultraviolet
cutoff. For the scalar Bose fields,Ft,s(x) and its canonical
conjugate momenta,Pt,s(x), Ft,s(x)5*2`

x dx8Pt,s(x8),
we use the standard Mandelstam representation,9 which in-
troduces a momentum cutoff functionL(k)5exp(2luku/2)
via the Fourier transforms. Thus, the electron field can
represented in terms of collective density operators wh
satisfy Bose commutation relations

ct,x,s'exp~ i tkFx!expi $ur~x!1tfr~x!

1s@us~x!1tfs~x!#%/2, ~2!

where the Bose fields~for both n5r,s) are defined by
fn /un5 i (p/N)(kÞ0eikx@n1(k)6n2(k)#L(k)/k, wherefn
©2004 The American Physical Society25-1
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are the number fields andun the current fields. The charg
~holon! and spin~spinon! number fluctuations are defined a
rt(k)5(srt,s(k), and st(k)5(ssrt,s(k). This type of
Bose representation provides a nonperturbative descrip
of the conduction electrons in terms of holons and spino8

We will neglect for the moment all the rapidly oscillatin
~umklapp! terms. These will give a contribution only at ha
filling, i.e., nc5nf , and will be analyzed later on. Thus, th
bosonized form of DKLM is

H5
vF

4p (
j ,n

$Pn
2~ j !1@]xfn~ j !#2%

1
J

2p (
j

@]xfs~ j !#Sj
z1

J

4pl (
j

$cos@fs~ j !#

1cos@2kF j 1fr~ j !#%~e2 ius( j )Sj
11H.c.!

2
J

2pl (
j

sin@fs~ j !#sin@2kF j 1fr~ j !#Sj
z . ~3!

This equation has the same form as for a standard Ko
lattice3 except that~i! we have to keep in mind that th
impurity spin, i.e., terms containingSj

z , Sj
1 , andSj

2 , con-
tributes only if there is anf spin at sitej, and ~ii ! the even
cutoff function L(k), defined in Eq.~2!, satisfying L(k)
'1 for uku,1/l and L(k)'0 otherwise, is needed in th
Bose fields to ensure that delocalized conduction electr
are described. Delocalization is essential to desc
ferromagnetism,3,4 since ferromagnetism in the Kondo lattic
models is due to the double exchange, which only requ
that Nc,Nf .10

In this situation each electron has on average more t
one localized spin to screen, and since hopping between
calized spins is energetically most favorable for electro
which preserve their spin as they hop, this tends to align
underlying localized spins.10 This also means that double e
change will vanish if the distance between impurity spins
larger thanl. At lengths beyondl the electrons will behave
as collective density fluctuations, as usual in on
dimensional systems.8 Hence,l measures the effective rang
of the double exchange, and, in principle, it is a function
J, nc , andnf .

The most straightforward method to determine an ord
ing of the localized spins is by applying a unitary transfo

mation H̃5eŜHe2Ŝ. We choose the transformation whic
changes to a basis of states in which the conduction-elec
spin degrees of freedom are coupled directly to the locali

spins Ŝ5 i (J/2pvF)( jus( j )Sj
z . We perform the unitary

transformation up to infinite order, so there is not any art
cial truncation error generated~for details see Ref. 3!. In the
new transformed basis the double-exchange interaction l
ing to ferromagnetism is clearly exhibited and we obtain
effective Hamiltonian for the localized spins:
17442
on
.

o

ns
e

s

n
lo-
s
e

s

-

f

r-
-

on
d

-

d-
e

Heff52
J2

2p2vF
(
i , j

l

l21~ i 2 j !2
Si

zSj
z

1
J

2pl (
i

$cos@K~ i !#1cos@2kFi #%Si
x

2
J

2pl (
i

sin@K~ i !#sin@2kFi #Si
z . ~4!

K( j ) originates from the unitary transformationK( j )
5 i (J/2pvF)( j 8@fs( j ),us( j 8)#Sj 8

z , with @fs( j ),us( j 8)#

5 ipsgn(j 2 j 8). Thus,K( j ) counts all theSj
z’s to the right

of the sitej and subtracts from those to the left ofj: K( j )
5(J/2vF)( j 8(Sj 1 j 8

z
2Sj 2 j 8

z ). This term gives the crucia
difference between KLM and DKLM, as will be explaine
later on. The most important term in Eq.~4! is the first one,
which clearly shows that a ferromagnetic coupling emer
for DKLM. This coupling is non-negligible forNc,Nf and
i 2 j <l and its strength will decrease with increasing d
tance between impurity spins.

For Nc,Nf , the physical picture given by Eq.~4! will be
crucially different if the lattice of impurity spins contain
commensurate or incommensurate array of holes. Hence
analyze these two cases separately. If we have a comme
rate doping of the impurity spins, then we can approxim
the ferromagnetic term in the usual way by taking'1/nf
for the shortest average distance betweenf spins:
$J2nf

2l/@2p2vF(11nf
2l2)#%( iSi

zSi 11/nf

z . Lattice sites

which are not occupied byf spins are inert and do not con
tribute to the ferromagnetic phase. This was verified
DMRG: the calculatedf -f spin correlation functions behav
similarly as those of the normal KLM. Thef-structure factor
has the usual peak atk/p5Nc /Nf for low J, hence in the
commensurate case the DKLM behaves similar to the s
dard KLM model.

To understand the behavior of the second and to th
term from Eq.~4!, we notice thatK( i ) is vanishingly small
for the commensurate case, as the number off impurity spins
to the left and to the right of a given sitei is the same. So the
effective Hamiltonian will reduce to the random transver
field Ising model, as in the KLM.3 The randomness is gen
erated by@11cos(2kFi)# at large distances and it is driven b
a cosine distribution, similar to spin glasses.11 To determine
the phase transition we need the dependencel
5l(J,nc ,nf), which however is very difficult to determine
and as such we use the low density valuel'A2/J close to
criticality, similar to previous works.3,12 In this way we ob-
tain the critical phase transition line to beJ
5p sin(pnc /2)/@12p sin(pnc /2)/nf

2#, which represents a
quantum order-disorder transition with variable exponen3

However, this ferromagnetic phase disappears for larger
tances between impurities because, as mentioned earlie
double-exchange interaction vanishes if the average dista
between impurity spins, 1/nf , is larger thanl. This is very
important because it ensures that the single-impurity li
nf→0 is free of ferromagnetism, as it should be.
5-2
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MAGNETISM IN THE DILUTE KONDO . . . PHYSICAL REVIEW B69, 174425 ~2004!
The incommensurate case is more difficult than the co
mensurate case. The reason is that in the low concentra
limit the properties of DKLM will be very much dependen
on the random distribution off spins. We may observe phas
separation or clusterization processes in this case. In
limit, where the average distance between impurities is v
large, then the single-impurity2 approximation seems natura
However, if we look at small doping off electrons only, then
the main difference compared to the commensurate l
studied previously is that theK( j ) term, in Eq.~4!, is not
negligible anymore. The impurityf spins are no longe
equally distributed to the left and right of a given sitej.
However, for small doping off electrons the main contribu
tion to K( j ), namely, to( j 8(Sj 1 j 8

z
2Sj 2 j 8

z ), is given by the
few number of uncompensated~free! spins,Sfree

z . Hence, we
write Sfree

z '( j 8(Sj 1 j 8
z

2Sj 2 j 8
z )52( j 8, j 8. jSj 8

z
2( j 8Sj 8

z . Not-
ing that 62iSz[exp(6ipSz), we have K( j )
'(J/2vF)exp(2ip(j8,j8.jSj8

z ). HenceK( j )'(21) j (J/2vF),
which gives rise to a staggered field. The properties of
~4! are then given by the staggered field Ising model, wh
gives an antiferromagnetic ordering. This antiferromagne
ordering of the impurity spins represents a new elemen
DKLM compared to the Kondo lattice. This corresponds
the soliton lattice obtained by Schlottmann in a dynami
mean-field treatment of the three-dimensional dilute Kon
lattice.13

Similar behavior also occurs above half filling, i.e.,Nc
.Nf , where double exchange~as shown previously! does
not appear. But bosonization still works: the effective Ham
tonian reduces to the second and third terms of Eq.~4!, from
which the most dominant term, for low doping of impuri
spins, as in the case described previously, is a staggereSi

z

field. As the first term in Eq.~4! is missing in this case, the
only fluctuation which can destroy a locked staggered or
is Si

x . For largeJ (4&J) the staggered order wins, while fo
smaller values ofJ the systems will be disordered.

As we approach half filling from both sides, the bosoniz
tion approach breaks down as the strongly oscillating~um-
klapp! fields start dominating. The DKLM will undergo
metal-insulator transition as in a standard quantum s
Gordon model14 by dynamical mass generation and a sp
gap will also appear. This can be understood easily, bec
the half-filled DKLM is equivalent to the quarter-filled per
odic Anderson model, which has an antiferromagne
order.12 The only difference from the Kondo lattice is that th
massive solitons obtained for DKLM are of Su, Schrieff
and Heeger type.15 However, in the case of DKLM the pres
ence of the spin gap will cause short-range antiferromagn
correlations to appear rather than a true long-range orde

To confirm the previously obtained magnetic phases,
performed non-Abelian DMRG~Ref. 7! analysis of the
DKLM model in the commensurate case, for both theNc
,Nf andNc.Nf , where ferromagnetism and antiferroma
netism, respectively, exist. The SO(4) symmetry of t
Kondo lattice survives into the dilute model, thus we u
basis states labeled by the total spin and total pseudos
This allows us to determine the phase diagram by dire
measuring the energy crossover of the polarized and sin
17442
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symmetry sectors, a technique which is not available wh
using just thez-component of spin.

For theNc,Nf case, we have investigated several co
mensurate dilution patterns of the form ‘‘00f 00f 00f . . . ’’;
‘‘0 f 0 f 0 f 0 f . . . ’’; and ‘‘0 f f 0 f f 0 f f . . . ’’ in a 64-site long
chain. While in theNc.Nf limit we have studied thenf
50.8 localized spin filling~to be in accordance with the
bosonization requirement of low dilution! on a 80-site long
DKLM chain, i.e., we investigated the patter
‘‘0 f f f f 0 f f f f f . . . . ’’

These patterns were selected in such a way that the c
middle-point reflection symmetry was preserved to acce
ate the calculations. There was only one exception:
‘‘0 f 0 f 0 f ’’ chain has an impurity in the middle
‘‘0 f 0 f f 0 f 0,’’ but its effect is rather small compared to ou
final errors and so it was neglected. An important techniq
for performing efficient DMRG calculations is the wave
function transformation to provide a good initial guess vec
from one iteration to the next, first introduced by White18

However White’s transformation does not apply to the ca
of reflection-symmetric blocks. This is because the envir
ment basis in the wave-function transformation is alwa
taken from theprevious sweep, whereas use of reflectio
symmetry demands that the environment block is the spa
reflection of the system block obtained from thecurrent
sweep. The correct transformation is only obtained after
termining the overlap between the previous and current b
vectors. This can be formulated as a minimization probl
and solved via a singular-value decomposition. This calcu
tion is presented in the Appendix.

In the DMRG calculations careful error and convergen
analyses were used, and we extrapolated the energy line
to zero truncation error~we saw no quadratic terms larg
enough to affect the fit!. For each given dilution pattern
filling Nc /Nf , and interaction constantJ, we used severa
DMRG sweeps of between 200 and 400 SO(4)-symmetric
states.16

For Nc,Nf ferromagnetism appears at largeJ values, see
Fig. 1. A point on the phase diagram shown in Fig. 1
judged to be ferromagnetic if the extrapolated energy of
spinSmax run is lower than the spin zero energy. This ener
difference to the spin-singlet excited state can be calcula
directly using the SO(4) basis set of the non-Abeli
DMRG. The phase transition line can be determined w
high accuracy if one plots the energy gap between the s
Smax and spin zero states as a function ofJ—the gap rapidly
decreases as the transition is approached. It should be m
tioned that, as well as in the standard Kondo case,4 there also
exists additional ferromagnetic phases inside the param
netic region for dilute Kondo chains.

In the opposite limit, i.e.,Nc.Nf , we have confirmed the
existence of short antiferromagnetic fluctuations by calcu
ing the spin structure factorS(k), the Fourier transform of
S(x)[^S0

zSx
z&, where x is measured in units of the lattic

constant. As can be seen in Fig. 2, for smallJ the peak in
S(k) is at 2kF ~similar to KLM, Ref. 4!, i.e., the DKLM is a
disordered paramagnet. The dominant 2kF backscattering
processes are manifest of a system of free localized s
embedded in effective fields determined by conductio
5-3
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M. GULACSI et al. PHYSICAL REVIEW B 69, 174425 ~2004!
electron scattering. As we increaseJ, a distinctive peak at
k5p appears~see Fig. 2!, thus DKLM exhibits an antiferro-
magnetic signal. However, this signal is broadened by
presence of the spin and charge gaps of the conduction
trons, as argued earlier. Simultaneously with the emerge
of the k5p peak, the 2kF peak starts to broaden, and as w
further increaseJ decreases in strength to the point that
vanishes.

To further investigate this antiferromagnetic signal w
performed an additional DMRG calculation fornf50.8 and
electron fillingnc50.9 atJ/t53, with 1000 states kept, bu
treating the localized spins as separate lattice sites. This
rifices some accuracy for a significant improvement in e
ciency. Due to the matrix product structure of the wave fu
tion obtained by DMRG, correlation functions inevitab
decay exponentially at long distances.19 By choosing larger
system sizes~the largest studied size wasL5600) that are
long compared with the ‘‘truncation length’’ imposed by th
DMRG, the effect of open boundaries is minimized. Thus
relevant length parameter for the calculation is not the s
tem size itself, but rather the truncation length of the DMR
This makes finite-size scaling analysis problematic, howe
we believe that within the accuracy of the overall calcu
tion, the obtained wave function is sufficiently close to t
thermodynamic limit that such analysis would not provi
additional information.

The obtained wave function agrees with the result fr
the shorter length chains, namely, the main feature is a p
in the structure factor atk5p, corresponding to exponentia
decay with a correlation length of 2963 lattice spacings, se
Fig. 3. Here in comparison to the exponential decay~con-
tinuous lines! we also show a power-law decay~dashed
curves!. The plot clearly shows that the best fit of the data
an exponential function. Thus the antiferromagnetic corre
tion length is always finite, which seems to indicate that t
regime is a continuation of the spin liquid state of the ha
filled Kondo lattice.17 However, the spin and charge gaps a

FIG. 1. The phase diagram of the dilute Kondo model in diff
ent commensurate filling cases forNc,Nf . Legend shows pattern
of dilution. Open circles correspond to the standard KLM mod
The system of a given dilution pattern is ferromagnetic above
corresponding solid line and paramagnetic below.
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much smaller than in the usual KLM. Indeed, direct me
surement of the gaps has proven problematic, even for r
tively small systems, hence there is a possibility of pow
law decay of the spin-spin correlation function for larg
enough distances with the vanishing of the spin gap.

In conclusion, we have studied the dilute Kondo latti
model in one dimension both numerically, using DMRG, a
analytically, with a standard bosonization approach. We h
derived an effective Hamiltonian for thef spins, which ac-
counts for the appearance of a ferromagnetic phase seen
a commensurate dilution pattern of the impurity spin arr
The paramagnetic-ferromagnetic phase transition shifts
higher couplingJ values as thef spins of the chain are di
luted, in agreement with the numerical DMRG calculatio
We have also shown that within the paramagnetic phas
the incommensurate dilution limit or above half filling, i.e
Nc.Nf for low doping of impurity spins, strong short-rang
antiferromagnetic correlations are found. This distinguish
the dilute Kondo lattice model from the standard Kondo l
tice model.
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APPENDIX

In this appendix, the basis transformation required to
tain an initial wave function at the midpoint of a reflectio
symmetric DMRG calculation is derived. At the midpoin
the wave function can be written in matrix form as a ten
product of left and right basis states, first for the wave fu
tion at the previous sweep,

uC&5(
a8a

~ca8a!ua8&ua&, ~A1!

where the left-block basis statesua8& are the spatial reflection
of the right-block basis statesua&. The wave function, at the
end of the standard transformation,18 is given in a mixed
basis as

uF&5(
ba

~cba!ub&ua&, ~A2!

which is the tensor product of the left-~system! block basis
of the current sweep with the right-~environment! block ba-
sis of the previous sweep. The task is to find a transforma
T5(tba) which gives the correspondence between the

FIG. 3. The logarithm of the spin-spin correlation functionS(x)
for the f ~squares! and c ~circles! electrons forJ53, nf50.8, nc

50.9, andL5600 with 1000 states kept. The continuous lines
the best linear fit, while the dashed lines are the best logarithmic
17442
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basis sets, thereby allowing the wave function to be de
mined in theb basis only, as required for the DMRG algo
rithm when reflection symmetry is used.

The required transformation maximizes the overlap
tween the wave function at the current and the wave func
at the previous sweep. The dimension of theua& and ub&
basis sets,Na and Nb , respectively, are not necessarily th
same, thusT is not in general a square matrix.

We consider the caseNb<Na , but the proof forNb.Na
proceeds similarly. The rows ofT can be constrained to b
orthogonal and normalized via a set of Lagrange multipli
la8a/2, represented as a matrix which can be taken to
symmetric. Thus the maximization problem is

F5 (
a,a8,b

fbaTba8caa82(
b8b

lb8b

2 (
a

~Tb8aTba2db8b!.

~A3!

Taking the partial derivative with respect toTba , one obtains

]F

]Tba
5(

a
fbacaa2(

b
lbbTba . ~A4!

The solution of]F/]Tba50 gives the desired transforma
tion. Switching to matrix form

FC†5LT, ~A5!

whereL5(lb8b) is an Nb3Nb symmetric matrix,F is an
Nb3Na matrix, C is an Na3Na matrix, andT is an Nb
3Ba row-orthogonal matrix.

We now perform the singular-value decomposition of t
left-hand side of Eq.~A5!, giving

FC†5UDVT, ~A6!

whereU is an Nb3Nb orthogonal matrix,D is an Nb3Nb
diagonal matrix containing the singular values, andVT is an
Nb3Na row-orthogonal matrix. The singular-value decom
position of the right-hand side of Eq.~A5! is performed for
L andT separately, giving

LT5UDLWTXDTVT, ~A7!

whereDL is anNb3Nb diagonal matrix containing the sin
gular values ofL, WT is a Nb3Nb orthogonal matrix,X is
anNb3Nb orthogonal matrix, andDT is anNb3Nb diagonal
matrix containing the singular values ofT. Now L is sym-
metric, therefore the singular-value decomposition reduce
a similarity transformation, givingW5U. But T is row or-
thogonal, therefore the singular values are identically eq
to 1, giving DT5I . Thus the singular values ofL must co-
incide with the singular values ofFC†, implying DL5D.
Thus,

FC†5UDVT5UDUTXVT, ~A8!

which implies thatX5U. Thus, from the singular-value de
composition ofT,

T5XDTVT5UVT, ~A9!

whereU andVT are given by the decomposition ofFC† in
Eq. ~A6!.

e
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