877 research outputs found

    Return to Battleship Island

    Get PDF
    No abstract available

    A manifesto for the metaverse: opportunities and challenges for learning development

    Get PDF
    Drawing upon a section of the co-created learning development (LD) Manifesto (ALDinHE, 2018), in this workshop we invite participants to come and be creative-and imagine beyond what learning developers do now into what they may do in the future, inspired by the metaverse. The metaverse is a science fiction hypothetical iteration from the book Snow Crash (Stephenson, 1992) set in a near future where the global political structure has collapsed(!), a tiny number of super-corporations control most aspects of life, and the rich spend their time in the metaverse (Ball, 2022). Today the metaverse is the Facebook-owned platform Meta, which Mark Zuckerberg (2021) explains as 'an embodied internet where you're in the experience, not just looking at it'. Rather than our current 2D, screen-based internet, the metaverse will be a 3D virtual space, accessed by either a VR headset or AR (augmented reality) glasses, which superimpose a layer of digital information on top of the visible world. What impact might this have on LD practices, knowledge and beliefs? The metaverse is highly contentious, and we invite learning developers to take the challenge and look to possible futures and their potential value to the sector. The educational possibilities of the metaverse will build from the UNESCO (2022) 'Reimagining education' discussion paper. There is also a need to focus the conversation on the ethics of the metaverse (Fielding, 2021), to consider how we can embed safety, privacy and inclusion at the core. It is fair to argue that these values closely align with LD, yet in the metaverse there is the potential forviolence, harassment, isolation and bullying. How can we promote and enhance equality, diversity and inclusion in this space?We will invite participants (who will work in teams) to co-create a #Take5 blogpost with us from our mapping and debates.No technology is needed for the session, and no previous knowledge of the metaverse.What does learning development do? Our manifesto:• It contextualises, embeds and maps knowledge, and contributes to learning gain.• It teaches how to learn and scaffolds learning.• It widens opportunity, not participation; it can trouble what we mean by participation.• It infiltrates throughout the university and operates in a 3rd space, connecting and • collaborating with the wider community. • It works with the hidden curriculum. • It legitimises the different forms of knowledge our students have.• It levels the playing field and widens the academy

    Return to Battleship Island

    Get PDF
    No abstract available

    Comparative effectiveness of telemedicine strategies on type 2 diabetes management: A systematic review and network meta-analysis

    Get PDF
    The effects of telemedicine strategies on the management of diabetes is not clear. This study aimed to investigate the impact of different telemedicine strategies on glycaemic control management of type 2 diabetes patients. A search was performed in 6 databases from inception until September 2016 for randomized controlled studies that examined the use of telemedicine in adults with type 2 diabetes. Studies were independently extracted and classified according to the following telemedicine strategies: teleeducation, telemonitoring, telecase-management, telementoring and teleconsultation. Traditional and network meta-analysis were performed to estimate the relative treatment effects. A total of 107 studies involving 20,501 participants were included. Over a median of 6 months follow-up, telemedicine reduced haemoglobin A1c (HbA1c) by a mean of 0.43% (95% CI: −0.64% to −0.21%). Network meta-analysis showed that all telemedicine strategies were effective in reducing HbA1c significantly compared to usual care except for telecase-management and telementoring, with mean difference ranging from 0.37% and 0.71%. Ranking indicated that teleconsultation was the most effective telemedicine strategy, followed by telecase-management plus telemonitoring, and finally teleeducation plus telecase-management. The review indicates that most telemedicine strategies can be useful, either as an adjunct or to replace usual care, leading to clinically meaningful reduction in HbA1c

    Characterization of algal community composition and structure from the nearshore environment, Lake Tahoe (United States)

    Get PDF
    Periphyton assemblages from the nearshore environment of the west (California) side of Lake Tahoe, were analyzed to determine their taxonomic composition and community structure across habitats and seasons. Lake Tahoe is the second deepest lake in the US and an iconic oligotrophic subalpine lake with remarkable transparency. It has experienced offshore cultural eutrophication since the 1960s with observations of nuisance nearshore algal growth since the mid 2000s attributed to anthropogenic stressors. Samplings from November 2019–September 2020 provide useful snapshots against which older monitoring may be contextualized. A voucher flora, complete with descriptions, photo-documentation and referencing to species concepts employed, was created as a method of providing reproducible identification and enumeration of algal species, and more seamless reconciliation of detailed taxonomic data with future monitoring projects. The eulittoral zone (0–2 m) is seasonally dominated by elongate araphid (Synedra, Ulnaria) and stalked or entubed diatoms (Gomphonema, Cymbella, Encyonema). The sublittoral zone (>2 m) is dominated by a nitrogen-fixing Epithemia-cyanobacteria assemblage with less seasonal changes in dominance and composition that expanded to impinge on the 2 m depths of the eulittoral zone in the Fall. Sublittoral epipsammic samples, despite their proximity to rocks, had a very distinct diatom composition and high species dominance, similar to what was seen in the Fall eulittoral samples, with high numbers of Staurosirella chains and small biraphid diatoms. The deeper samples at 30 and 50 m contained high numbers of live Epithemia, and indicate a thriving sublittoral assemblage at these greater depths, but with less biomass. The 2019–20 data show many of the same diatom taxa observed in the 1970’s and 1980’s but with changes in species dominance. Notably, there was less of the green alga Mougeotia, when compared to the 1970’s data, and a higher dominance by nitrogen fixing Epithemia in the sublittoral zone, persisting year-round. These new data show roughly double the algal species biodiversity that had been documented previously in the Lake Tahoe nearshore, and is largely attributed to the methods employed. Adopting these new methods in future monitoring efforts should improve harmonization of taxonomic data and help advance our knowledge of the contributions to nearshore cultural eutrophication.Fil: Noble, Paula J.. University Of Nevada; Estados UnidosFil: Seitz, Carina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Lee, Sylvia S.. No especifíca;Fil: Manoylov, Kalina M.. No especifíca;Fil: Chandra, Sudeep. University Of Nevada; Estados Unido

    Lipid biomarker and stable isotopic profiles through Early-Middle Ordovician carbonates from Spitsbergen, Norway

    Get PDF
    One of the most dramatic episodes of sustained diversification of marine ecosystems in Earth history took place during the Early to Middle Ordovician Period. Changes in climate, oceanographic conditions, and trophic structure are hypothesised to have been major drivers of these biotic events, but relatively little is known about the composition and stability of marine microbial communities controlling biogeochemical cycles at the base of the food chain. This study examines well-preserved, carbonate-rich strata spanning the Tremadocian through Upper Dapingian stages from the Oslobreen Group in Spitsbergen, Norway. Abundant bacterial lipid markers (elevated hopane/sterane ratios, average = 4.8; maximum of 13.1), detection of Chlorobi markers in organic-rich strata, and bulk nitrogen isotopes (delta N-15(total)) averaging 0 to -1 parts per thousand for the open marine facies, suggest episodes of water column redox-stratification and that primary production was likely limited by fixed nitrogen availability in the photic zone. Near absence of the C-30 sterane marine algal biomarker, 24-n-propylcholestane (24-npc), in most samples supports and extends the previously observed hiatus of 24-npc in Early Paleozoic (Late Cambrian to Early Silurian) marine environments. Very high abundances of 3 beta-methylhopanes (average = 9.9%; maximum of 16.8%), extends this biomarker characteristic to Early Ordovician strata for the first time and may reflect enhanced and sustained marine methane cycling during this interval of fluctuating climatic and low sulfate marine conditions. Olenid trilobite fossils are prominent in strata deposited during an interval of marine transgression with biomarker evidence for episodic euxinia/anoxia extending into the photic zone of the water column. (C) 2019 Elsevier Ltd. All rights reserved.Peer reviewe

    Characterization of algal community composition and structure from the nearshore environment, Lake Tahoe (United States)

    Get PDF
    Periphyton assemblages from the nearshore environment of the west (California) side of Lake Tahoe, were analyzed to determine their taxonomic composition and community structure across habitats and seasons. Lake Tahoe is the second deepest lake in the US and an iconic oligotrophic subalpine lake with remarkable transparency. It has experienced offshore cultural eutrophication since the 1960s with observations of nuisance nearshore algal growth since the mid 2000s attributed to anthropogenic stressors. Samplings from November 2019–September 2020 provide useful snapshots against which older monitoring may be contextualized. A voucher flora, complete with descriptions, photo-documentation and referencing to species concepts employed, was created as a method of providing reproducible identification and enumeration of algal species, and more seamless reconciliation of detailed taxonomic data with future monitoring projects. The eulittoral zone (0–2 m) is seasonally dominated by elongate araphid (Synedra, Ulnaria) and stalked or entubed diatoms (Gomphonema, Cymbella, Encyonema). The sublittoral zone (>2 m) is dominated by a nitrogen-fixing Epithemia-cyanobacteria assemblage with less seasonal changes in dominance and composition that expanded to impinge on the 2 m depths of the eulittoral zone in the Fall. Sublittoral epipsammic samples, despite their proximity to rocks, had a very distinct diatom composition and high species dominance, similar to what was seen in the Fall eulittoral samples, with high numbers of Staurosirella chains and small biraphid diatoms. The deeper samples at 30 and 50 m contained high numbers of live Epithemia, and indicate a thriving sublittoral assemblage at these greater depths, but with less biomass. The 2019–20 data show many of the same diatom taxa observed in the 1970’s and 1980’s but with changes in species dominance. Notably, there was less of the green alga Mougeotia, when compared to the 1970’s data, and a higher dominance by nitrogen fixing Epithemia in the sublittoral zone, persisting year-round. These new data show roughly double the algal species biodiversity that had been documented previously in the Lake Tahoe nearshore, and is largely attributed to the methods employed. Adopting these new methods in future monitoring efforts should improve harmonization of taxonomic data and help advance our knowledge of the contributions to nearshore cultural eutrophication
    • …
    corecore