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ABSTRACT  

One of the most dramatic episodes of sustained diversification of marine ecosystems in 

Earth history took place during the Early to Middle Ordovician Period. Changes in climate, 

oceanographic conditions, and trophic structure are hypothesised to have been major drivers of 

these biotic events, but relatively little is known about the composition and stability of marine 

microbial communities controlling biogeochemical cycles at the base of the food chain. This 

study examines well-preserved, carbonate-rich strata spanning the Tremadocian through Upper 

Dapingian stages from the Oslobreen Group in Spitsbergen, Norway. Abundant bacterial lipid 

markers (elevated hopane/sterane ratios, average = 4.8; maximum of 13.1), detection of Chlorobi 

markers in organic-rich strata, and bulk nitrogen isotopes (δ
15

Ntotal) averaging 0 to -1‰ for the 
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open marine facies, suggest episodes of water column redox-stratification and that primary 

production was likely limited by fixed nitrogen availability in the photic zone. Near absence of 

the C30 sterane marine algal biomarker, 24-n-propylcholestane (24-npc), in most samples 

supports and extends the previously observed hiatus of 24-npc in Early Paleozoic (Late 

Cambrian to Early Silurian) marine environments. Very high abundances of 3β-methylhopanes 

(average = 9.9%; maximum of 16.8%), extends this biomarker characteristic to Early Ordovician 

strata for the first time and may reflect enhanced and sustained marine methane cycling during 

this interval of fluctuating climatic and low sulfate marine conditions. Olenid trilobite fossils are 

prominent in strata deposited during an interval of marine transgression with biomarker evidence 

for episodic euxinia/anoxia extending into the photic zone of the water column. 

Keywords – Early Ordovician, Middle Ordovician, GOBE, carbon isotopes, nitrogen isotopes, 

methane cycling 

 

1. Introduction 

The Paleozoic Eon was marked by two major episodes of diversification. The first one 

occurred in the Cambrian and is known as the ‘Cambrian Explosion’, during which most of the 

major metazoan groups with mineralised skeletons first appear in the fossil record. The second 

occurred in the Ordovician and is known as the Great Ordovician Biodiversification Event 

(GOBE; Sepkoski et al., 1981; Droser & Finnegan, 2003; Webby et al., 2004; Servais & Harper, 

2018). During the GOBE, many of the groups that dominated marine ecosystems until the 

Permian-Triassic mass extinction diversified and rose to ecological dominance. The 

diversification was accompanied by a variety of major ecological changes including i) increased 
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tiering of benthic ecosystems (Bottjer & Ausich, 1986), ii) re-establishment of metazoan-

dominated reefs (Kröger et al., 2017a), iii) expansion of nektonic and pelagic ecosystems 

(Servais et al., 2008; Kröger et al., 2009; Servais et al., 2015), and iv) establishment of a 

latitudinal diversity gradient (Kröger, 2018). Although the timing of diversification varied across 

clades and from region to region, much of the diversity increase occurred during the Early and 

Middle Ordovician, especially between the Dapingian (470 Ma) and Darriwilian (467 Ma) stages 

(Miller & Foote, 1996; Miller, 1997; Droser & Finnegan, 2003; Rasmussen et al., 2016; 

Trubovitz & Stigall, 2016; Kröger, 2018).  

A variety of inter-related extrinsic drivers have been invoked to explain aspects of the 

GOBE, including i) climatic cooling (Trotter et al., 2008; Rasmussen et al., 2016; Kröger, 2018), 

ii) increasing oxygenation of the oceans (Saltzman et al., 2015; Edwards et al., 2017) and 

associated changes in carbonate saturation state (Pruss et al., 2010), and iii) increased volcanic 

and erosional nutrient flux (Miller & Mao, 1995; Vermeij, 1995; Allmon & Martin, 2014). The 

Late Cambrian to Early Ordovician rise of acritarch diversity (Servais et al., 2015), followed by 

diversification of suspension-feeding benthic and planktonic organisms in the Early and Middle 

Ordovician (Servais et al., 2008), suggests that changes in the amount and/or nature of primary 

production may have played an important role in the GOBE.  However, relatively little is known 

about the broad structure of marine microbial communities through this period, such as the 

balance of algal versus bacterial primary producers.   

Previous organic geochemical and isotopic investigations of rocks from the Ordovician 

Period have focused largely on intervals of the Middle Ordovician (Hatch et al., 1987; Foster et 

al., 1989, 1990; Summons & Jahnke, 1990; Pancost et al., 1998, 1999; Ambrose et al., 2001; 

Edwards et al., 2013; Spaak et al., 2017), and the Late Ordovician (Rohrssen et al., 2013; 
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Mustafa et al., 2015; Smolarek et al., 2017). Oil shales of the Middle Ordovician (Estonian 

kukersites; Mastalerz et al., 2003) and carbonate reservoirs containing oil source rocks from the 

United States (Guthrie & Pratt, 1995) and northwest China (Tarim Basin; e.g., Cai et al., 2009; 

Pang et al., 2013; Xiao et al., 2016) are of economic importance. Interest in the Late Ordovician 

to Early Silurian comes from understanding the mechanisms and climatic drivers that led to the 

Late Ordovician Hirnantian glaciation (Delabroye & Vecoli, 2010; Finnegan et al., 2011; Luo et 

al., 2016) and the Late Ordovician Mass Extinction (LOME; LaPorte et al., 2009; Rohrssen et 

al., 2013; Luo et al., 2016; Zou et al., 2018).  

In contrast, the organic geochemical characteristics of Early-Middle Ordovician 

sedimentary rocks have undergone less scrutiny until now. Previous biomarker studies have 

focused on facilitating improved oil-source correlations for petroleum fluids expelled from the 

Cambro-Ordovician Alum Shale in Sweden (Dahl et al., 1989) and from source rocks from 

central Australia (Summons & Powell, 1991; Jarrett et al., 2016) and the Tarim Basin in China 

(Li et al., 2000; Cai et al., 2009; Chen et al., 2018 and references therein). Broader goals of this 

study were then to help bridge a gap in the ancient biomarker record through an important Early-

Middle Ordovician interval and to investigate relationships between microbial community 

structure and nutrient cycling. Here we present a detailed lipid biomarker and stable isotopic 

investigation of a near-continuous section of well-preserved carbonate-rich sedimentary rocks 

from the eastern terrane of Ny-Friesland, Spitsbergen, Norway (Figure 1).  

 

2. Geological setting and sampling 
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The Hinlopenstretet Supergroup contains the Precambrian and Paleozoic successions in 

the eastern terrane of the Ny-Friesland area in Spitsbergen, Norway (Figure 1). The Paleozoic 

Oslobreen Group unconformably overlies Neoproterozoic glacial sediments of the Precambrian 

Polarisbreen Group (Halverson, 2011). The Cambro-Ordovician section of the Oslobreen Group 

contains the Cambrian Tokammane Formation and the Early-Middle Ordovician Kirtonryggen 

and Valhallfonna Formations. These sections have been well studied stratigraphically and 

paleontologically (e.g., Fortey & Brunton, 1973; Fortey & Cocks, 2003; Brandl, 2009; Stouge et 

al., 2011; Lehnert et al., 2013; Kröger et al., 2017b and references therein) but high resolution 

geochemical (either molecular or isotopic) characterisation for this succession is sparse (Brandl, 

2009). 

Figure 1A shows the study area and sampling site with magnified inset (Figure 1B), 

which has been previously described in detail by Kröger et al., 2017b and references therein. 

Samples were collected from three different locations (Figure 1B) during the field expedition in 

the northern hemisphere summer of 2016. For lipid biomarker and stable isotope analyses, ten 

samples total were taken from the Kirtonryggen Formation—two from the Spora Member (Spora 

River), five from the Basissletta Member, and three from the Nordporten Member. 20 

sedimentary rocks in total were sampled from the Valhallfonna Formation—18 samples were 

collected at higher resolution (every 9.2 metres, on average) from the Olenidsletta Member with 

and additional two samples from the uppermost Profilbekken Member. Lithological description 

of all samples are provided in Supplementary Table 1 with complementary detailed stratigraphic 

column shown in Figure 1D. 

2.1 Kirtonryggen Formation 
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The Kirtonryggen Formation (deposited during the Tremadocian-Floian stages, 485-470 

Ma) contains the Spora, Basissletta, and Nordporten Members. The Spora Member of the 

Kirtonryggen Formation contains mostly planar-bedded limestone and wavy-bedded dolostones 

containing trilobite, gastropod, and cephalopod fossils (Figure 1D). The Basissletta Member that 

overlies the Spora Member shows a similar lithology at its base. The middle Basissletta Member 

displays a change in lithology as it contains horizons of flat pebble conglomerates and 

intraclastic conglomerates in the middle of the section. In contrast, the uppermost Basissletta 

Member contains stromatolitic and oolitic facies and planar-bedded limestone. The Basissletta 

Member is in turn overlain by the Nordporten Member, which is composed of mainly wavy-

bedded dolostone with argillaceous/shaly and intraclastic conglomerate layers in between. The 

middle of the Nordporten Member contains a silty section with trilobite and cephalopod fossils. 

The upper Nordporten Member continues to be dominantly wavy-bedded dolomite containing 

trilobite, gastropod, and cephalopod fossils.  

2.2 Valhallfonna Formation 

 The Valhallfonna Formation (deposited during the Floian-Darriwilian stages, 470-458 

Ma) contains the Olenidsletta and Profilbekken Members. The base of the Olenidsletta Member 

contains the cephalopod-rich wavy-bedded dolostone from the Nordporten Member and 

transitions into densely laminated, mixed dark limestone and black mudstones/bituminous shales 

throughout the entire sequence with a decrease in the abundance of marine fossils (Figure 1D). 

The deposition of this interval is interpreted to coincide with a local basin deepening and this 

succession contains rocks with higher organic carbon content than the underlying Kirtonryggen 

Formation. The lower and middle Olenidsletta Member contains mixed dark limestone and black 

mudstones and contains trilobites throughout (mostly in the lower part of the section) and 
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sparingly through the middle. The upper Olenidsletta Member sees the return of wavy-bedded 

dolostones, hardgrounds, and flint nodules (Kröger et al., 2017b) including abundant inarticulate 

brachiopods. This fossiliferous section of the Olenidsletta Member corresponds to the V2a and 

V2b trilobite biozones with olenid trilobites prominent (Fortey, 1980), the Oepikodos 

intermedius conodont biozone (Lehnert et al., 2013), and the Didymograptus bifidus and 

Isograptus victoriae lunatus graptolite biozone (Cooper & Fortey, 1982). The top of the 

Olenidsletta Member (before the transition into the Profilbekken Member) returns to the 

composition of the lower/middle Olenidsletta Member. The Profilbekken Member is similar in 

depositional environment and lithological composition to the Nordporten Member from the 

Kirtonryggen Formation (Kröger et al., 2017b), containing planar-bedded limestone with 

trilobites, cephalopods, and inarticulate brachiopods. 

3. Methods 

3.1 Sample preparation 

Outcrop samples were collected, wrapped in pre-combusted (550°C, 9 hours) aluminium 

foil and stored in cloth bags. Outer portions of each sample were removed with a water-cooled 

diamond saw and inner portions were sonicated three times for 15 mins each in rinses of 

deionised water (DI), dichloromethane (DCM), methanol, (MeOH), n-hexane, and DCM. Each 

solvent rinse was discarded prior to rinsing with the next solvent. Cleaned rock samples were 

crushed using an organic solvent-cleaned zirconia ceramic puck mill in a 8515 SPEX Shatterbox 

with a procedural blank of pre-combusted (850°C, 9 hours) sand. Combusted quartz sand blanks 

were run parallel with the extracted rock powders as full analytical procedural blanks as an 

important control to monitor background contamination. 
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3.2 Bulk organic carbon and nitrogen isotopes 

For isotopic analysis, samples were decarbonated with 1 M HCl to remove any carbonate 

material prior to isotopic measurement of the organic material. Samples and standards were 

weighed out on a Mettler Toledo microbalance (ranging from 5 mg to 40 mg depending upon 

organic content) and loaded into the EA autosampler. The remaining organic residue was 

measured for bulk carbon (δ
13

C) and nitrogen (δ
15

N) isotope signatures using an Elementar 

Isotope Select cube elemental analyser (EA) coupled to a VisION isotope ratio mass 

spectrometer (IRMS). All samples for carbon and nitrogen were run in triplicate, with stable 

isotope results reported as δ
13

C relative to VPDB in permil (‰) and calibrated using certified 

international standards (USGS24 & NBS22). The measured standard deviation for all carbon 

isotope measurements is ±0.1‰. Stable isotope results are reported as δ
15

N relative to air in 

permil (‰) and calibrated using certified international standards (USGS25, IAEA-N-1 & IAEA-

N-2). The measured standard deviation for all nitrogen isotope measurements is ±0.2‰. 

 

3.3 LECO Total Organic Carbon (TOC) and Rock-Eval Pyrolysis analyses 

To determine TOC contents, the decarbonated samples were analysed at GeoMark 

Research using a LECO C230 instrument. The LECO C230 instrument was calibrated with 

standards that have known carbon contents. Standards were combusted by heating to 1200°C in 

the presence of oxygen; both carbon monoxide (CO) and carbon dioxide (CO2) were generated 

and the CO was converted to CO2 by a catalyst. The CO2 product mass was measured by an IR 

cell. Combustion of samples with unknown organic carbon content was then completed and the 

response of these samples per mass unit was compared to that of the calibration standard. 
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Standards were analysed every 10 samples to check variation and calibration of the analysis. 

Acceptable standard deviation for TOC is 3% variation from established value. 

 Approximately 100 mg of washed, ground (60 mesh) whole rock sample were analysed 

in a Rock-Eval II instrument. Measurements include S1: free bitumen content (mg HC/g rock); 

S2: remaining generation potential (mg HC/g rock); Tmax: temperature at maximum evolution 

of S2 hydrocarbons (°C); and S3: organic carbon dioxide yield (mg CO2/g rock), and were 

generated by heating according to the following parameters S1: 300°C for 3 minutes; S2: 300°C 

to 550°C at 25°C/min, held at 550°C for 1 minute; S3: trapped between 300 to 390°C. 

Instrument calibration was achieved using a rock standard with values determined from a 

calibration curve to pure hydrocarbons of varying concentrations.  

 

3.4 Sample extraction 

10-30 g of rock powder per sample was extracted in organic solvent-cleaned Teflon 

vessels on a CEM MARS5 microwave accelerated reaction system in 30 ml of 9:1 (v/v) 

DCM/MeOH. Samples were heated to 100°C for 15 mins with constant stirring. Procedural 

blanks were performed with combusted silica. Rock bitumens were filtered and desulfurised with 

solvent-cleaned and HCl-activated copper granules (Alfa Aesar). Saturated, aromatic, and polar 

hydrocarbons were obtained through fractionation on dry-packed silica gel (Fisher, 60 grit) 

microcolumns. The silica gel was combusted in a muffle furnace at 450°C for at least 9 hours to 

remove any organic contaminant residue prior to adsorption of whole rock extracts and use in 

column chromatography. The saturated hydrocarbon fraction eluted with 1 dead volume (DV) of 

n-hexane, aromatic hydrocarbons with 3 DVs of 1:1 (v/v) n-hexane:DCM, and the polar 

hydrocarbons with 2 DVs of 3:1 (v/v) DCM:MeOH.  
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3.5 Gas Chromatography-Mass Spectrometry (GC-MS) 

The saturated and aromatic hydrocarbon fractions were run in full scan and selected ion 

monitoring (SIM) mode on an Agilent 7890A GC system coupled to an Agilent 5975C inert 

MSD mass spectrometer. The GC was equipped with a DB1-MS capillary column (60 m × 0.32 

mm, 0.25 μm film thickness) and He was used as the carrier gas. The GC temperature program 

used was 60°C (held for 2 min), heated to 150°C at 20°C/min, then to 325°C at 2°C/min, and 

held at 325°C for 20 mins. Pristane/phytane (Pr/Ph) ratios were measured from relative peak 

areas using total ion current (TIC) chromatograms acquired from full scan analysis. Chlorobi-

derived carotenoid biomarkers, including aryl isoprenoids, isorenieratane, and paleorenieratane 

were identified based on 133 and 134 Dalton (Da) mass chromatograms, with 3,4,5- and 2,3,6-

trimethyl-substituted aryl isoprenoid abundances measured from peak areas in 133 Da ion 

chromatograms, with isorenieratane and paleorenieratane verified from mass spectra and 

retention times. 

3.6 Gas Chromatography-Metastable Reaction Monitoring (GC-MRM) 

Saturated hydrocarbons were analysed in metastable reaction monitoring (MRM) mode 

on a Waters AutoSpec Premier equipped with an Agilent 7890 gas chromatograph (GC). The GC 

was equipped with a DB1-MS capillary column (60 m × 0.25 mm, 0.25 µm film thickness) and 

He was used as the carrier gas. Samples were run in full scan mode and injected into the GC in 

splitless mode at 60°C for 2 min, heated at 10°C/min to 150°C, then 3°C/min to 320°C for 22 

mins. Analyses were performed in electron impact mode with 70 eV ionisation energy and 8 kV 

accelerating voltage. MRM transitions for C27-C35 hopanes, C31-C36 methylhopanes, C21-C22 and 
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C26-C30 steranes, C30 methylsteranes and C19-C26 tricyclics were monitored in the method used. 

Procedural blanks with pre-combusted sand yielded less than 0.1 ng of individual hopane and 

sterane isomers per gram of combusted sand. Polycyclic biomarker alkanes (tricyclic terpanes, 

hopanes, steranes, etc.) were quantified by addition of 50 ng of deuterated C29 sterane standard 

[d4-ααα-24-ethylcholestane (20R), Chiron Laboratories] to saturated hydrocarbon fractions and 

by comparison of relative peak areas. MRM-GC-MS was used to determine accurate biomarker 

abundance ratios for all the polycyclic biomarkers plotted in Figures 2, 4, and 5. Analytical error 

for individual hopane and sterane concentrations are estimated at ± 30%. Average uncertainties 

in hopane and sterane biomarker ratios are ± 8% as calculated from multiple analyses of 

saturated hydrocarbon fractions from oil standards. 

 

4. Results 

Chemostratigraphic records were obtained by integrating geochemical data from 

sedimentary strata from three different outcrop sections spanning two formations of the 

Oslobreen Group—the upper Valhallfonna Formation (Olenidsletta Member as denoted by PO 

and Profilbekken Member as denoted by PR) and the underlying Kirtonryggen Formation (all 

samples from Spora, Basissletta, and Nordporten Members denoted by PS). The raw 

geochemical data used to construct the stratigraphic plots shown in Figures 2-5 are available in 

Supplementary Tables (3-6). Younger biomarkers (oleanane, oleanane triterpanes, bicadinane, 

and taraxastane), plastic-derived hydrocarbons (e.g., branched alkanes with quaternary carbon 

centres, BAQCs), and other obvious contaminants are absent in all samples. The distinctive 

Ordovician patterns evident in the biomarker assemblages and the robust stratigraphic trends in 
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biomarker ratios are generally consistent with the age, thermal maturity and lithology of the host 

rocks, which is an important self-consistency check that supports biomarker syngenicity for our 

sample set.  

4.1 Thermal maturity proxies 

Selected saturated and aromatic hydrocarbon maturity ratios alongside Tmax from Rock 

Eval pyrolysis (values listed in Supplementary Table 3), placing these samples in the mid-oil 

window range of thermal maturity, but prior to peak generation, and with a generally consistent 

thermal maturity profile observed throughout the section (Figure 2). A Tmax range from 441 to 

446°C for samples from the Olenidsletta Formation (PO; Figure 2A), methylphenanthrene index 

(MPI) in the range of 0.4 to 1.0 (average = 0.73, Figure 2B), average C29 ααα sterane 

(20S/20S+20R) of 0.51 ± 0.04 (Figure 2D), and average C31 αβ hopane (22S/22S+22R) of 0.58 ± 

0.01 are all consistent with this assessment. Ts/Ts+Tm ratios for C27 hopanes (Figure 2C) are 

fairly low and constant throughout the Profilbekken and Olenidsletta Members (average of 0.36 

± 0.05) but are consistently higher (average of 0.54 ± 0.12) in the underlying Kirtonryggen 

Formation, which is more thermally mature (Supplementary Table 3). 

4.2 Organic and inorganic carbon content and bulk stable carbon and nitrogen isotopes 

All sedimentary rocks analysed in this study contain high carbonate content (wt%), 

(Figure 3A) with an overall range of 53 to 99 wt% of the bulk mass. At the top of the Nordporten 

Member of the Kirtonryggen Formation (the boundary between the Nordporten and the deeper 

water strata of the Olenidsletta Member), there is a decrease in carbonate content as the lithology 

becomes mixed with siliciclastic minerals (mudstone and siltstone). Carbonate content then 

increases again stratigraphically higher into Profilbekken Member shallow water carbonates 
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(Kröger et al., 2017b). TOC content is generally low for most of the Kirtonryggen Formation 

(most samples with <0.1 wt%; Figure 3B) but increases to 2.5 wt% at the top of the unit in 

samples from the Olenidsletta Member of the Valhallfonna Formation (TOC ranging from 0.2 to 

3.8 wt%), with two noticeable spike increases around the base and at the top of this succession, 

which throughout is generally associated with a deeper shelf depositional setting than the 

underlying and overlying strata.  

Bulk organic carbon isotopes through the Kirtonryggen and Valhallfonna Formations are 

stable, showing little variation throughout (average -30.4‰ ± 0.8‰; Figure 3C) and typical of 

bulk organic carbon values for Paleozoic sedimentary rocks (Hayes et al., 1999). There is a slight 

decreasing trend toward lighter δ
13

Corg values from the base of the Basissletta Member up to the 

Basissletta/Nordporten boundary representing a small variation of ca. 2‰ in magnitude. δ
13

Corg 

values return to a heavier baseline of -29‰ at the Nordporten/Olenidsletta boundary with 

another small, (ca. 2‰) negative excursion through to the upper portion of the Olenidsletta 

Member, followed by a low magnitude recovery to ca. -30‰. Bulk nitrogen isotopes (δ
15

Ntotal) 

are most enriched in δ
15

N in the Basissletta Member (average of +1.5‰) and experience a ca. 

2.4‰ negative excursion (down to -1‰) at the Nordporten/Olenidsletta boundary coinciding 

with higher TOC content (Figure 3D). δ
15

Norg values then increase again to ca. +1‰ moving 

from the Nordporten/Olenidsletta boundary into the overlying Profilbekken Member. Overall, 

the average δ
15

Ntotal signature for all data points is near zero in value (+0.4‰), close to the 

typical ancient sedimentary bulk nitrogen isotope values associated with a bacterial nitrogen 

fixation (ca. 0 to -1‰) signature (Delwich & Steyn, 1970). 

4.3 Saturated hydrocarbon biomarkers 
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Saturated hydrocarbon profiles of these Oslobreen Group carbonates generally contain 

abundant n-alkanes and alkylcyclohexanes with only a slight odd-over-even (OEP) carbon 

number preference, but no strong G. prisca (Gloeocapsomorpha prisca; nC15, nC17, and nC19 

alkane carbon number preference) molecular signature is discernible. Pristane and phytane are 

the dominant isoprenoids and methylalkanes are generally low in abundance relative to the 

dominant n-alkanes. The most abundant polycyclic biomarker alkanes include tri- and tetracyclic 

terpanes, steranes, hopanes, and methylhopanes. Saturated hydrocarbons show variable contents 

of unresolved complex mixtures (UCMs) from sample to sample (e.g., Supplementary Figure 1). 

Carbonates from the Profilbekken Member and the Kirtonryggen Formation have small or no 

UCMs, whereas samples from the Olenidsletta Member have small and moderate to larger 

UCMs. Although reasons for this are not entirely clear, enhanced UCMs in Ordovician rocks are 

generally associated with more reducing environmental marine conditions which is reminiscent 

of the prominent UCM features of saturated hydrocarbons profiles from immature 

Mesoproterozoic marine rocks rich in bacterial source inputs and deposited in low oxygen 

marine conditions (e.g., Pawlowska et al., 2013). 

Hopane/sterane ratios show a declining trend from very high values (ca. 13) at the base of 

the Basissletta Member (Figure 4B) to values slightly higher (ca. 2.2) than the upper boundary 

value of the Phanerozoic marine average at the Nordporten/Olenidsletta boundary. Through the 

Olenidsletta Member, hopane/sterane ratios increase to average values of 6.4 in the Profilbekken 

Member. Total sterane (sum of C27-C29 regular steranes and diasteranes) concentrations are 

lower (0.8 to 13 ppm TOC) in the Kirtonryggen Formation compared with the upper 

Valhallfonna Formation (4 to 50 ppm TOC) (Supplementary Table 2). C29 steranes are the 

dominant steranes which is typical for Paleozoic sedimentary rocks and oils (e.g., Schwark & 
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Empt, 2006; Haddad et al., 2016), followed by C27 and C28 (Figure 4E). C28/C29 sterane ratios 

have moderate values throughout the entire section, showing little variation with stratigraphic 

position (Figure 5B; average 0.5 ± 0.1). C30 steranes are either very low in abundance or below 

detection limits. C30 steranes are below detection limits in all Kirtonryggen Formation samples 

and appear in small quantities (both 24-n-propylcholestane and 24-isopropylcholestane; 24-npc 

and 24-ipc, respectively) in select Olenidsletta Member samples (Supplementary Table 5). Total 

C27-C35 hopane concentrations in the Kirtonryggen Formation (7 to 102 ppm TOC) are similar to 

the same range as the upper Valhallfonna Formation (7 to 144 ppm TOC), but overall slightly 

lower than the middle to lower Valhallfonna Formation (Supplementary Table 2). C29/C30 

hopane ratios are quite high (average = 0.95) as is typical for sedimentary rocks with high 

carbonate mineral content (Peters et al., 2005; Figure 5C). 

Methylhopanes, both 2α- and 3β- (sum of C31-C36), are present and abundant in all 

samples from the Oslobreen Group (Figure 4C, 4D and Figure 6). Both exhibit similar 

concentrations throughout the section, with slightly higher values of 3β-methylhopanes in the 

Olenidsletta and Profilbekken Members (Figure 4C, 4D and Supplementary Table 2). Absolute 

abundances of 2α- and 3β-methylhopanes in the Kirtonryggen and Valhallfonna Formations 

range from 0.1 to 3 ppm TOC. Methylhopane indices (MeHI) were calculated for the C31 

homologue of 2α-methylhopane and 3β-methylhopane (expressed as a percentage value from C31 

αβ MeH/C31 αβ MeH +C30 αβ hopane). The 2α-methylhopane trend shows an initial decrease at 

the base of the Spora Member with recovery to higher values in the Basissletta Member. 

Upsection through the Nordporten Member, 2α-methylhopane indices (2MeHI) drop to ca. 5 and 

recover to ca. 10 at the Nordporten/Olenidsletta boundary (Figure 4C). Through the more 

organic-rich Olenidsletta Member, the 2MeHI remains constant with most values around 5% 
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(average 5.6% ± 1.6%). 3β-methylhopane indices (3MeHI) show a range of values (3 to 17%) 

but are generally high in magnitude (Figure 6) and consistently above typical Phanerozoic 

marine average values (1 to 3%). At the base of the Olenidsletta Member, there is an increase in 

3MeHI (from 3% to 13%) moving stratigraphically upwards into strata with higher TOC 

contents. Additionally, acyclic biphytane (C40) from archaea was found in most of the 

Olenidsletta Member samples (Supplementary Table 7) and in trace amounts in two samples 

from the lower Basissletta Member and lower Nordporten Member of the Kirtonryggen 

Formation. The relative abundance of acyclic biphytane to n-alkanes (nC35) in Olenidsletta 

Member samples is highest in the upper Valhallfonna Formation. Other C40 cyclic (mono-, bi-, 

and tri- cyclic biphytanes) were found in six Olenidsletta Member samples and in trace quantities 

in five samples throughout the section (Supplementary Figures 2 and 3). These are below 

detection limits in samples from the Kirtonryggen Formation. 

Figure 4G shows the gammacerane index (calculated as gammacerane/C30 αβ hopane) 

exhibiting mostly low values through the Olenidsletta, Nordporten, and the upper and middle 

Basissletta Members, which is consistent with a normal marine salinity environment (Peters et 

al., 2005) and no strong water column stratification related to salinity during the deposition of 

rocks with appreciable TOC content. The exception is for the organic-lean Basissletta/Spora 

Member carbonates deposited in more saline and restricted environments, exhibiting values up to 

0.7 in the Spora Member. Other selected biomarkers indicative of paleoenvironmental and 

paleoredox depositional conditions, such as Pr/Ph (pristane/phytane), homohopane index 

(HHI%; as (C35/C31-C35)*100)), C28 bisnorhopane (28BNH/C30 αβ hopane), and 

dibenzothiophene/phenanthrene (DBT/P) are shown in Figures 5D-5G. Pr/Ph values increase 

from ca. 0.5 at the base of the Kirtonryggen Formation to 1.2 in the Nordporten Member and 
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decrease to low values (ca. 0.5) in the middle of the Olenidsletta Member. Values recover to ca. 

1.0 in to the Profilbekken Member (Figure 5D). The homohopane index (HHI; Figure 5E), C28 

bisnorhopane (Figure 5F), and DBT/P (Figure 5G) all show antithetical relationships to Pr/Ph 

values. These particular proxies increase markedly in the middle of the Olenidsletta Formation, 

which is the more organic-rich strata and likely associated with deposition during marine 

transgression sustaining a redox-stratified water column, whilst remaining low and invariable in 

the rest of the strata.  

4.4 Aromatic hydrocarbon biomarkers 

All aromatic hydrocarbon fractions contain a variety of 1 to 7 ring polyaromatic 

hydrocarbons (PAHs) including phenanthrene, alkylphenanthrenes, dibenzothiophenes, 

benzofluoranthenes, benzopyrenes, and coronenes, and contain large UCMs in full scan and 

selected ion monitoring (SIM) mode. Additionally, mono- and triaromatic steroids are also 

present in all samples. Almost all samples from the Valhallfonna Formation with appreciable 

TOC contents (>0.3%) contain paleorenieratane, isorenieratane, and 2,3,6- and 3,4,5-

trimethylarylisoprenoids (in samples where paleorenieratane is higher than isorenieratane). 

Figure 7 shows partial ion chromatograms (m/z 134 and 546) of isorenieratane (I; Figure 7A) and 

paleorenieratane (P) and trimethylaryl isoprenoid fragments (Figure 7B) in a sample from the 

Profilbekken Member. Two samples from the Profilbekken Member (PR-6 and PR-30.4) and 

most samples from the Olenidsletta Member contain higher relative amounts of isorenieratane 

than paleorenieratane (I > P; Figure 4F). The most striking trend observed is for strata near the 

base of the Olenidsletta Member which contain significantly greater amounts of paleorenieratane 

compared to isorenieratane (P/I > 2). This corresponds to a switch to increasing TOC content of 

the host rocks and a likely deeper water and open marine depositional environmental setting due 
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to local sea level rise. Aromatic carotenoids and arylisoprenoid fragmentation products were 

below detectable limits in all samples from the Kirtonryggen Formation. Other carotenoids, such 

as β-carotane, γ-carotane, lycopane, okenane, and chlorobactane, were below detectable limits in 

all samples. 

 

5. Discussion 

The biomarker assemblages and their implication for biological source inputs and 

paleoenvironmental settings  

The organic geochemical and stable isotopic characteristics of Early-Middle Ordovician 

carbonates from Spitsbergen exhibit some broad characteristics similar to those reported 

previously from Middle-Late Ordovician marine settings (e.g., Rohrssen et al., 2013; Spaak et 

al., 2017), albeit with some deviations likely due to local overprint effects, such as organic 

matter source inputs and local paleoenvironments. Ordovician marine sedimentary rocks and oils 

often contain low acyclic isoprenoids abundances, elevated hopane/sterane ratios, high 3β-

methylhopanes, as found also for our sample set (e.g., Fowler & Douglas, 1984; Jacobsen et al., 

1988; Summons & Jahnke, 1990; Rohrssen et al., 2013; Spaak et al., 2017).  

In terms of major alkane constituents, the rock extracts from the Oslobreen Group are 

dominated by a marine n-alkane signature (extending from nC15 up to nC40) that begin to tail off 

in abundance with increasing carbon number above nC22 (Supplementary Figure 1). The n-

alkanes and alkylcyclohexane abundance profiles in all our rock extracts do not have the 

pronounced G. prisca signature (Fowler & Douglas, 1984), namely a readily discernible carbon 

number preference for low molecular weight odd carbon numbered n-alkanes and 
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alkylcyclohexanes. Some samples show carbon number preference for low molecular weight odd 

carbon numbered n-alkanes and alkylcyclohexanes (nC15, nC17, and nC19) enhanced in m/z 83 

and m/z 85 ion chromatograms, respectively. The lack of a pronounced G. prisca signature in n-

alkanes has also been observed in other Ordovician source rocks (e.g., Fowler, 1992; Sun et al., 

2013; Rohrssen et al., 2013). In our rock set, the major organic matter source input appears to be 

dominated by amorphous marine Type II kerogen derived mainly from mixed autochthonous 

bacterial and algal sources.  

The C29 steranes commonly comprise the most abundant sterane signal throughout the 

section with an average value of 44%, although the C27 steranes become slightly higher in a 

restricted interval for organic-lean strata within the Nordporten Member (Figure 4E). However, 

the magnitude of the C29 sterane dominance is overall lower in our sample set than previously 

reported for other Early Paleozoic paleotropical settings of Late Ordovician (Rohrssen et al., 

2013) and Late Devonian (Haddad et al., 2016; Martinez et al., 2018) age. The proportion of 

C28/C29 steranes, which average ca. 0.5 in this study (expected for Paleozoic rocks), is also 

higher than the average values of ca. 0.3 for paleotropical marine settings in the Late Ordovician 

(Rohrssen et al., 2013) and the Late Devonian (Haddad et al., 2016). The enhanced proportions 

of C28 and C27 sterane biomarkers suggest that prasinophyte algae and other algal groups existed 

as significant contributors to preserved organic matter along with the C29 sterol-producing green 

algal clades (Schwark & Empt, 2006; Kodner et al., 2008; Haddad et al., 2016).  

Hopanes methylated at the C-3 position are typically low in abundance relative to the 

regular hopane series in most Phanerozoic marine sedimentary rocks (usually within a tight 

range of 1-3% of C30 αβ hopane; Peters et al., 2005; Cao et al., 2009; Rohrssen et al., 2013), but 

have been found to be moderately to highly elevated during certain periods in Earth history 
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associated with low marine sulfate conditions; e.g., in the Paleoproterozoic (Brocks et al., 2005), 

the Mesoproterozoic (Blumenberg et al., 2012), the Middle Ordovician (Spaak et al., 2017), the 

Late Ordovician-Silurian (Summons & Jahnke, 1990; Rohrssen et al., 2013), and the Late 

Permian (Cao et al., 2009). Biological precursors of 3β-methylhopanoids include diverse groups 

of proteobacteria (Welander & Summons, 2012), although microaerophilic proteobacteria 

(typically Type I methanotrophic bacteria) are usually invoked as a major source (Farrimond et 

al., 2004). This is supported by 
13

C-depletion in 3β-methylhopanes from compound-specific 

carbon isotope measurements of ancient rocks containing abundant 3β-methylhopanes (Collister 

et al., 1992; Ruble et al., 1994). A likely source of the relatively abundant 3β-methylhopanes in 

Oslobreen Group marine carbonates is from methanotrophic bacteria as for Late Ordovician 

strata (Rohrssen et al., 2013).  

In addition to abundant 3-methylhopanes, we detected acyclic biphytane in most of the 

samples from the Olenidsletta Member and in trace quantities in one Basissletta and one 

Nordporten Member sample (Supplementary Table 6). Additionally, 11 samples from the 

Olenidsletta Member contained trace but detectable amounts of mono-, bi-, and tricyclic 

biphytanes (the latter constituting a cluster of peaks, suggesting some cyclic groups were the 

result of diagenetic and catagenetic alteration with prominent m/z 263 fragment ion; 

Supplementary Figure 2 and 3; DeLong et al., 1998). Although intact acyclic biphytane is rarely 

found preserved in ancient sedimentary rocks and oils (Saito et al., 2017; Schinteie & Brocks, 

2017), a recent study has found acyclic biphytane and associated degradation products in 

sedimentary rocks deposited in a Neoproterozoic hypersaline ecosystem (Schinteie & Brocks, 

2017). At 820 Ma, this constitutes the oldest occurrence of acyclic biphytane in the geological 

record, likely derived from the membranes of halotolerant archaea. Acyclic biphytane preserved 
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in the Oslobreen carbonates of the Early-Middle Ordovician in this study thus far presents the 

oldest reported occurrence of acyclic biphytane preserved under conventional marine salinity 

conditions (as supported by generally low gammacerane index values), and is sourced from 

archaea, with the previous oldest occurrences in the Jurassic/Cretaceous (Kuypers et al., 2001; 

Carrillo-Hernandez et al., 2003). The high UCMs in the high molecular weight region of our 

samples, combined with low absolute abundances of acyclic biphytane, precludes the possibility 

of obtaining accurate and reproducible compound-specific carbon isotope ratio values for 

biphytane. Although given the overall biomarker characteristics, the co-occurrence of acyclic 

biphytane and trace amounts of cyclic biphytanes along with high 3MeHI values suggest that an 

enhanced microbially-driven methane cycle likely occurred in this low marine sulfate 

environment. In this scenario, biphytane could be derived from methanotrophic and/or 

methanogenic archaea (Kuypers et al., 2001) with the abundant 3β-methylhopanes largely 

sourced from microaerophilic methanotrophic bacteria. Previously, elevated 3β-methylhopanes 

have been reported from samples from the Late Ordovician of Laurentia and Baltica (Rohrssen et 

al., 2013) and more recently from the Middle Ordovician of Gondwana (Spaak et al., 2017). 

Overall, methanotrophic microorganisms appear to be largely contributing to the bitumen 

composition, pointing to enhanced and sustained methane cycling occurring during the 

Ordovician as suggested previously (Rohrssen et al., 2013). This active methane cycle has 

potential implications for climate and climate feedbacks in the Middle and Late Ordovician.  

Lipid biomarker ratios provide information about the redox state of the environment in 

which organic matter was deposited. Figure 5D-5G displays stratigraphic trends for Pr/Ph, 

homohopane index (HHI), C28 bisnorhopanes, and dibenzothiophene/phenanthrene (DBT/P) and 

shows that the Olenidsletta Member—thought to be deposited during a local deepening of the 
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basin (Kröger et al., 2017b)—was deposited under redox-stratified water column conditions, 

which is supported by the higher TOC contents observed in this section. A cross-plot of the 

arylisoprenoid ratio (AIR; C13-C17/C18-C22 arylisoprenoids) and Pr/Ph indicate that these samples 

were seemingly deposited under persistently anoxic conditions in the photic zone (as defined in 

Schwark & Frimmel, 2004; Supplementary Figure 4), although the upper surface mixed layer 

must have remained oxygenated within a redox stratified water column. Carotenoids and their 

arylisoprenoidal degradation products have been reported previously in Early-Middle Ordovician 

samples (Cai et al., 2009; French et al., 2015) and are expected for locally productive continental 

margin settings sustaining photic zone euxinia in the lower portion of the photic zone (down to 

ca. 100 m depth). The presence of trimethylarylisoprenoids (both 2,3,6- and 3,4,5- isomers) 

along with isorenieratane and paleorenieratane in all Olenidsletta Member samples indicate that, 

in addition to being anoxic, the water column could have been episodically euxinic in the photic 

zone.  

The major driver of variation in the formations studied are attributed to changes in 

microbial communities, however, differences in lithologies and paleoredox are also contributing. 

The depositional environment of the youngest Profilbekken Member is most similar to the upper 

Nordporten Member—representing open shelf, shallower water carbonates. The lower 

Kirtonryggen Formation (lower Basissletta Member) represents a facies deposited under more 

restricted environmental conditions. In this lower strata, we observe high gammacerane index 

values up to 0.7 at the base of the section which could be pointing to a more saline, stratified 

environment. Additionally, microbialite and oolite structures are common only in the lower 

Basissletta Member (Kröger et al., 2017b) and an organic source contribution from benthic 

microbial mats is anticipated and consistent with the low TOC contents and biomarker 
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assemblages reported for this strata. The Olenidsletta Member is perhaps the most distinctive of 

all three, being deposited under deeper water conditions during a marine transgression, with 

enhanced organic matter preservation (as indicated by higher TOC). Lipid biomarkers and 

nitrogen isotopes indicate that this bacterial-dominated environment was characterised by anoxic 

and intermittently photic zone euxinic conditions. 

δ
13

Corg values—average -30.4‰—from the Oslobreen Group are similar to reports from 

other Early-Middle Ordovician localities (e.g., Buggisch et al., 2003; Azmy & Lavoie, 2009; 

Zhang et al., 2010; Edwards & Saltzman, 2016) and close to the average δ
13

Corg of -29.4‰ for 

global bulk marine sedimentary organic matter for this time period (Hayes et al., 1999 and 

references therein). Some sections from South China (Zhang et al., 2010), Ireland (Jahren et al., 

2013), and France (Alvaro et al., 2008) report average carbon isotopic values that are, on 

average, 4-6‰ heavier than reported here. However, Jahren et al. (2013) reported 
13

C-enriched 

bulk organic matter values in the Ordovician of Ireland (Illaunglass Formation, Tremadocian-

Floian stages), these values are 13‰ heavier than the ones measured in the sample set 

investigated here. It has been proposed from palynological and isotopic evidence that 

colonisation of primitive land plants prior to the Devonian rise of vascular land plants (Middle 

Ordovician; Strother et al., 1996; Tomescu et al., 2009; Rubinstein et al., 2010; Spaak et al., 

2017) may be a possible explanation for these anomalously 
13

C-enriched bulk isotopic values 

(Tomescu et al., 2009; Jahren et al., 2013). Such signature contributions are not evident in bulk 

δ
13

Corg values from the Early-Middle Ordovician strata of Spitsbergen.  

High bacterial contributions to preserved organic matter 
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The ratio of the sum of all the major hopane versus sterane constituents (H/St) gives a 

broad but informative guide to the overall balance of bacterial versus eukaryotic source 

contributions to preserved sedimentary organic matter and can be accurately measured from 

MRM-GC-MS. The Phanerozoic marine average for organic-rich sedimentary rocks and oils for 

(H/St) ratio typically falls in the range of 0.5 to 2.0 (Peters et al., 2005; Rohrssen et al., 2013). 

The H/St for all of our Oslobreen Group samples are generally above the upper limit of the 

marine Phanerozoic average (upper value of the Phanerozoic average is 2.0, for our samples the 

average value is 6.4). Values >2 are found even in the deeper water strata with appreciable TOC 

content of the lower Olenidsletta Member (Figure 4B), indicating a high proportion of bacterial 

source input contributions to the preserved organic matter during sediment deposition.  

A series of 2α-methylhopanes are present and abundant in all samples, with most 2MeHI 

values exceeding 5% (average = 6.6%; Figure 4C). Biological precursors of 2-methylhopanes 

have previously been linked to oxygenic photosynthesising cyanobacteria (Summons & Jahnke, 

1990; Summons et al., 1999) but have subsequently also been found in anoxygenic 

photoautotrophs and other bacteria (Rashby et al., 2007; Doughty et al., 2009; Welander et al., 

2010). While 2α-methylhopanes cannot be used to identify specific biological source organisms 

(Ricci et al., 2014) they can, however, provide some broad insights into depositional 

environmental conditions. Intriguing correlations between elevated 2α-methylhopanes and 

distinctive chemostratigraphic indicators have been noted previously in the geological record. 

High 2α-methylhopane abundances in the Phanerozoic rock record have previously been 

associated with the duration or the aftermath of oceanic anoxic events (OAEs) and often, but not 

always (French et al., 2014), accompanied by shifts in bulk nitrogen isotopes suggesting nitrate 

limitation (e.g., Kuypers et al., 2004; Cao et al., 2009; Sepúlveda et al., 2009; Luo et al., 2011). 
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This shift in nitrogen isotopic compositions to 
15

N-depleted (zero to negative) values (Figure 3D) 

is likely due to the activity of diazotrophic cyanobacteria fixing nitrogen as plankton and/or 

proliferation of microbial mats. Elevated 2α-methylhopanes combined with low (ranging from -2 

to +4‰ but averaging -1 to +1‰ for normal marine salinity facies) δ
15

Ntotal values are in general 

agreement with a stratified and nutrient (nitrate)-limited aquatic environment favouring 

diazotrophic bacteria. Nitrogen isotope values reported here are similar to those reported in 

another Early Ordovician section (Azmy et al., 2015) and fixed nitrogen limitation has been 

commonly associated with Late Ordovician shelf and basinal settings (e.g., LaPorte et al., 2009; 

Kiipli & Kiipli, 2013; Luo et al., 2016). The more organic-rich strata of the lower Olenidsletta 

Member yield δ
15

Ntotal signatures which are slightly 
15

N-depleted by about 1‰ (mostly within 

the 0 to -1‰ range in Figure 3D) relative to organic-lean rocks. This may signify increased 

transport of recycled 
15

N-depleted ammonium back into the water column from sedimentary 

organic matter during redox stratification for uptake by green algae and other microbial 

producers, given the higher TOC contents. Overall though, the near zero signatures for δ
15

Ntotal 

are strongly indicative of bioavailable fixed nitrogen being the local limiting nutrient for primary 

productivity for Oslobreen Group rocks. This is also consistent with the elevated H/St and 

2MeHI values that indicate a high contribution of bacterial source organisms. 

Implications of extremely low/absent C30 regular steranes 

An Early Paleozoic hiatus in the occurrence of the C30 sterane compound, 24-n-

propylcholestane (24-npc), in ancient marine environments was proposed previously (Rohrssen 

et al., 2015). This particular sterane biomarker is often applied to distinguish marine depositional 

environments, as opposed to lacustrine or highly restricted marine basins. 24-npc is a steroid 

marker biosynthesised by pelagophyte microalgae for most Phanerozoic rocks and oils of 
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Devonian age and younger (Gold et al., 2016). Possible sources of 24-npc sterane in older 

Phanerozoic and Neoproterozoic rocks are demosponges (Love et al., 2009) and/or foraminifera 

(Grabenstatter et al., 2013). Rohrssen et al. (2015) found that 24-npc was low or absent in 

samples from Middle-Late Cambrian age as well as during an extended interval spanning the 

Late Ordovician-Early Silurian transition.  

We found that 24-npc is below detection limits (estimated as 0.34% of total C27-C30 

steranes, to take account of prominent UCMs) in samples from the Kirtonryggen Formation and 

first appears in trace concentrations beginning near the base of the Olenidsletta Member. 

Abundance of this compound continues to be present either in trace amounts or below detection 

limits throughout the Olenidsletta Member but increases slightly at the very top (reaching only 

up to 0.8% of total C27-C30 steranes, continuing into the Profilbekken Member. The first hiatus of 

C30 steranes, reported by Rohrssen et al. (2015), is extended by our results where 24-npc was 

below detection limits in the Kirtonryggen Formation and part of the Olenidsletta Member. This 

hiatus is now extended from the Middle Cambrian into the Early Ordovician. 24-npc has been 

widely reported in Neoproterozoic rocks and oils from different locations (e.g., Love et al., 2008; 

Love et al., 2009; Grosjean et al., 2009; Kelly et al., 2011; Lee et al., 2013), particularly in 

eutrophic settings but can also be absent in Neoproterozoic rocks despite the recognition of the 

characteristic C29 sterane dominance (Pehr et al., 2018). It is likely that the source of 24-npc in 

the Neoproterozoic and Early Paleozoic is derived from demosponges, which also biosynthesise 

24-isopropylcholestane (24-ipc), and/or from foraminifera (Grabenstatter et al., 2013) given that 

marine pelagophyte and their algal ancestors did not likely produce C30 sterols until around the 

Devonian Period as gauged from molecular clock estimates (Gold et al., 2016). Therefore, our 

samples that contain detectable amounts of 24-npc steranes from the Olenidsletta Member are 
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probably not algal derived, particularly as the 24-ipc biomarker is found in similar abundance to 

24-npc (Love et al., 2009; Love & Summons, 2015; Gold et al., 2016). 

Potential implications for marine invertebrate taxa during the GOBE 

Overall the lipid biomarker assemblages and stable isotopic characteristics for this 

paleotropical marine shelfal setting, suggest a bacterially-dominated community structure that 

was influenced and moderated by sea level and ocean connectivity fluctuations, water column 

redox-stratification during marine transgression, as well as overall nutrient cycle constraints. 

Fixed nitrogen limitation would have been a commonly important factor influencing the ecology 

of paleotropical shelf environments during the Early Ordovician, since availability of organic 

matter for heterotrophic uptake was strongly nutrient-limited.  

Trilobite faunas during periods of redox stratification (i.e., in the lower and upper 

Olenidsletta Member, when TOC is high and δ
15

Ntotal is low) were exclusively comprised of 

species belonging to the family Olenidae, a group characteristic of deep-water, low-oxygen 

conditions in Ordovician sedimentary basins (Farrell et al., 2011), and of putatively pelagic taxa, 

such as agnostid arthropods and the trilobites Carolinites and Opipeuter (Fortey, 1974; Fortey, 

1980). It has been proposed that olenid trilobites may have possessed sulfide-oxidising 

symbionts within their tissues to adapt to benthic conditions prone to episodic anoxia and euxinia 

(Fortey, 2000). Low Pr/Ph ratios together with elevated homohopane indices (%HHI) and 

dibenzothiophene/phenanthrene ratios (Figure 5) support the notion that oxygen and sulfidic 

environmental stress was an important factor for marine invertebrates in both the benthic and 

pelagic realm during the interval associated with the deposition of the Olenidsletta Member, 

sustained by organic matter remineralisation and consumption of oxidants. Brachiopod 



  

28 

 

assemblages of the Kirtonryggen Formation are low in diversity and dominated by articulated 

forms (Hansen & Holmer, 2010, 2011). During the deposition of the Olenidsletta Member, a 

strong diversification in the brachiopods resulted in the dominance of linguliform brachiopods. 

This diversification and shift in dominance has been interpreted as mainly reflecting the 

deepening and the changing water column redox conditions during the deposition of the 

Olenidsletta Member (Hansen & Holmer, 2010, 2011). Overall, productivity constraints from 

nutrient limitation, as well environmental shifts associated with sea level change and redox-

stratification variation would all have contributed to the selection pressure on different marine 

invertebrate groups and strongly influenced the temporal variability of the marine community 

structure. 

While our biomarker assemblages exhibit some of the main characteristic reported 

previously for Middle-Late Ordovician and Early Silurian sedimentary rocks and oils (e.g., high 

hopane/sterane ratios, high 3-methylhopane content, C29 sterane dominance, and low/absent C30 

steranes), it extends their temporal range for the first time as valid for marine environments for 

the Early-Middle Ordovician interval. The combination of biomarker characteristics that we 

report through the Early-Middle Ordovician are not only unique but fundamentally different than 

what is observed in younger Paleozoic rocks, as revealed from detailed investigation of 

Devonian sedimentary organic matter (e.g., Haddad et al., 2016; Martinez et al., 2018). The 

temporal shifts in marine biomarker assemblages, which is becoming apparent across the breadth 

of the Paleozoic Era, reflect the irreversible impact that biotic and climatological innovations had 

on the evolution of life and environment during this extended interval (Lenton et al., 2012). 
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6. Conclusions 

Detailed lipid biomarker and stable isotope stratigraphic records were generated for a 

suite of oil window-mature Early-Middle Ordovician sedimentary carbonates from the eastern 

terrane of Ny-Friesland, from Spitsbergen, Norway, which were deposited in a paleotropical 

marine shelf setting. This represents the first time, to our knowledge, that the biomarker and 

stable carbon and nitrogen isotope systematics have been investigated to better characterise the 

microbial communities and nutrient cycling for this important time interval of Earth history 

which witnessed significant climatic and biospheric evolutionary changes. Biomarker 

assemblage analysis reveals that the organic-lean strata of the Kirtonryggen Formation was 

deposited in a semi-restricted and shallow oxygenated marine environment with high salinity 

elevated above typical marine salinity, dominated by bacterial primary producers including likely 

contributions from benthic microbial mats. The transition from the middle to uppermost 

Kirtonryggen Formation into the Valhallfonna Formation, around the base of the Olenidsletta 

Member, represents a local deepening of the basin marked by elevated productivity and 

deposition of sedimentary rocks with higher organic matter content under a redox-stratified water 

column, including episodes of photic zone euxinia. The locally nitrate-limiting and oxygen-

deficient conditions would have favoured diazotrophs as the dominant primary producers and the 

low sulfate marine conditions (relative to Mesozoic and younger settings) likely helped sustain 

active marine methane cycling between the sediment package and the water column. We 

observed consistently high 3MeHI values mainly in the 5 to 15% range (average = 9.9%) which 

is well above marine Phanerozoic values (typically from 1 to 3%) and commonly detected C40 

acyclic and cyclic biphytane markers derived from archaea.  
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In terms of implications for the enablement and sustenance of the GOBE, sufficient 

biomass production and replenishment of bioavailable dissolved nitrogen species via nitrogen 

fixation from diazotrophic bacteria and/or advection of nitrogen or ammonium onto the shelf 

from exchange with open ocean waters, would have been required to support the heterotrophic 

nutrient requirements of diverse groups of marine invertebrates. Additionally, the development 

of water column stratification, with anoxic/euxinic layers shoaling at least episodically into the 

photic zone, during the deposition of the more organic-rich Olenidsletta Member of the 

Valhallfonna Formation, shows that changing sea level and redox conditions also influenced the 

temporal stability of marine invertebrate communities. Olenid trilobite fossils are prominent 

within this strata and these may have possessed sulfide-oxidising microbial symbionts which 

helped them adapt to these metabolically-challenging benthic marine conditions. Distinctive 

biomarker characteristics reported previously for Middle and Late Ordovician rocks and oils 

(particularly the exceptionally high 3MeHI values and absence or only traces of 24-npc steranes) 

are also found here for the first time for the Early-Middle Ordovician from detailed MRM-GC-

MS analysis of lipid biomarker assemblages. This emphasises that the Ordovician Period 

represented an important evolutionary and environmental transition period which led to the 

reorganisation of the Paleozoic marine biosphere, affecting both microbial and marine 

invertebrate communities. 
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FIGURE CAPTIONS 

Figure 1. A) Map of sampling location in Spitsbergen, Norway. B) Magnified inset of the three 

sampling sites for the Valhallfonna (PR—Profilbekken Member and PO—Olenidsletta Member) 

and Kirtonryggen Formations (PS—Spora, Basissletta, and Nordporten Members). C) 

Paleogeographic distribution of continents during the Early-Middle Ordovician (from Scotese & 

McKerrow, 1990), star represents low latitude location of Spitsbergen. D) Detailed stratigraphic 

column of the sampled interval. E) Description of symbols and abbreviations: L—Laurentia; S—

Siberia; B—Baltica; and G—Gondwana. Dpg—Dapingian, Olenids.—Olenidsletta, PR—

Profilbekken. TR—trilobite, GS—gastropod, CPH—cephalopod, SP—sponge, ECH—

echinoderm, art. brachiopod—articulate brachiopod, inart. brachiopod—inarticulate brachiopod. 

Figure 2. Thermal maturity profiles through the Kirtonryggen and Valhallfonna Formations. A) 

Tmax (in °C); B) methylphenanthrene index, MPI; [1.5(3-MP+2-MP)/(P+9-MP+1-MP)]; C) 

Ts/Ts+Tm; D) C29 steranes (C29 αααS/(αααS+αααR); E) C31  αβ hopanes (C31 22S/C31 22S 

+22R); and F) C30 hopanes (C30 βα/C30 βα+αβ). Dpg.—Dapingian; Sp.—Spora Member; 

Olenids.—Olenidsletta Member; PR—Profilbekken Member. Grey dashed bar delineates the 

Valhallfonna Formation (above) from the Kirtonryggen Formation (below). 

Figure 3. Bulk carbon and stable isotopic ratio profiles through the Kirtonryggen and 

Valhallfonna Formations. A) Carbonate content (in weight percent); B) Total Organic Carbon 

(TOC, in weight percent); C) Bulk organic carbon isotopes (δ
13

Corg, in ‰ VPDB); and D) bulk 

nitrogen isotopes (δ
15

Ntotal, in ‰ vs. air). Dpg.—Dapingian; Sp.—Spora Member; Olenids.—

Olenidsletta Member; PR—Profilbekken Member. Grey dashed bar delineates the Valhallfonna 

Formation (above) from the Kirtonryggen Formation (below). 
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Figure 4. Selected lipid biomarker ratios through the Kirtonryggen and Valhallfonna Formations. 

A) Total organic carbon (TOC; in weight percent %); B) Hopane/sterane (sum of C27-C35 

hopanes/sum of C27-C29 diasteranes and regular steranes); C) 2α-methylhopane index, in percent 

(2MeHI%; C31 2α-methylhopane/2α-methylhopane+C30 αβ hopane x 100); D) 3β-methylhopane 

index, in percent (3MeHI%; C31 3β-methylhopane/3β-methylhopane+C30 αβ hopane x 100); E) 

%steranes for C27 (filled circles), C28 (grey diamonds), and C29 (open squares); F) ratio of 

paleorenieratane/isorenieratane (paleo/iso) for Valhallfonna Formation samples; and G) 

Gammacerane index (Gammacerane/C30 αβ hopane). Dpg.—Dapingian; Sp.—Spora Member; 

Olenids.—Olenidsletta Member; PR—Profilbekken Member. Grey shaded bar in B) and D) 

represent the Phanerozoic marine average; grey dashed bar delineates the Valhallfonna 

Formation (above) from the Kirtonryggen Formation (below). 

Figure 5. Selected lipid biomarker ratios through the Kirtonryggen and Valhallfonna Formations. 

A) TOC (in weight percent); B) C28/C29 steranes; C) C29/C30 hopane; D) Pristane (Pr)/Phytane 

(Ph); E) homohopane index (HHI) in % (C35 hopanes/sum of C31-C35 homohopanes x 100); F) 

C28 bisnorhopane/C30 αβ hopane; and G) dibenzothiophene/phenanthrene (DBT/P). Dpg.—

Dapingian; Sp.—Spora Member; Olenids.—Olenidsletta Member; PR—Profilbekken Member. 

Grey dashed bar delineates the Valhallfonna Formation (above) from the Kirtonryggen 

Formation (below). 

Figure 6. Partial MRM ion chromatograms from the saturated hydrocarbon fraction of PO-92.4 

(Olenidsletta Member, Valhallfonna Formation) highlighting the abundance of methylhopanes. 

A) C30 αβ and βα hopanes (white), γ = gammacerane; B) C31 2α-methylhopane (black); C31 αβ (S 

and R) hopanes (light grey); and C31 3β-methylhopane (dark grey); C) C31 αβ (S and R) hopanes 
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(light grey); D) C32 2α-methylhopanes (black) and 3β-methylhopanes (dark grey); and E) C33 2α-

methylhopanes (black) and 3β-methylhopanes (dark grey). 

Figure 7. Partial ion chromatogram acquired in selected ion monitoring (SIM) mode for the 

aromatic hydrocarbon fraction of a sample from the Profilbekken Member (PR-6) showing A) 

m/z 134; open circles denote the C13-C22 members of  2,3,6-trimethylated arylisoprenoids, and B) 

m/z 546 highlighting C40 compounds; p—paleorenieratane and i—isorenieratane. 
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Highlights 

1. Bacterially-dominated microbial environment with enhanced methane cycling 

2. Aromatic carotenoids reveal anoxic and episodically euxinic conditions 

3. Below detectable limits of the C30 marine algal biomarker extends the C30 hiatus  

4. Nutrient supply contributes to natural selection of marine invertebrates 

 


