426 research outputs found

    Lattice-Boltzmann simulations of the dynamics of liquid barrels

    Get PDF
    We study the relaxation towards equilibrium of a liquid barrel—a partially wetting droplet in a wedge geometry—using a diffuse-interface approach. We formulate a hydrodynamic model of the motion of the barrel in the framework of the Navier-Stokes and Cahn-Hilliard equations of motion. We present a lattice-Boltzmann method to integrate the diffuse-interface equations, where we introduce an algorithm to model the dynamic wetting of the liquid on smooth solid boundaries. We present simulation results of the over-damped dynamics of the liquid barrel. We find that the relaxation of the droplets is driven by capillary forces and damped by friction forces. We show that the friction is determined by the contribution of the bulk flow, the corner flow near the contact lines and the motion of the contact lines by comparing simulation results for the relaxation time of the barrel. Our results are in broad agreement with previous analytical predictions based on a sharp interface model

    A sublimation heat engine

    Get PDF
    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid–vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation

    Growth saturation of unstable thin films on transverse-striped hydrophilic-hydrophobic micropatterns

    Full text link
    Using three-dimensional numerical simulations, we demonstrate the growth saturation of an unstable thin liquid film on micropatterned hydrophilic-hydrophobic substrates. We consider different transverse-striped micropatterns, characterized by the total fraction of hydrophilic coverage and the width of the hydrophilic stripes. We compare the growth of the film on the micropatterns to the steady states observed on homogeneous substrates, which correspond to a saturated sawtooth and growing finger configurations for hydrophilic and hydrophobic substrates, respectively. The proposed micropatterns trigger an alternating fingering-spreading dynamics of the film, which leads to a complete suppression of the contact line growth above a critical fraction of hydrophilic stripes. Furthermore, we find that increasing the width of the hydrophilic stripes slows down the advancing front, giving smaller critical fractions the wider the hydrophilic stripes are. Using analytical approximations, we quantitatively predict the growth rate of the contact line as a function of the covering fraction, and predict the threshold fraction for saturation as a function of the stripe width.Comment: 11 pages, 5 figure

    Passing to an effective 4D phantom cosmology from 5D vacuum theory of gravity

    Get PDF
    Starting from a five-dimensional (5D) vacuum theory of gravity where the extra coordinate is considered as noncompact, we investigate the possibility of inducing four-dimensional (4D) phantom scenarios by applying form-invariance symmetry transformations. In particular we obtain phantom scenarios for two cosmological frameworks. In the first framework we deal with an induced 4D de-Sitter expansion and in the second one a 4D induced model where the expansion of the universe is dominated by a decreasing cosmological parameter Λ(t)\Lambda(t) is discussed.Comment: version accepted in Physics Letters

    Super exponential inflation from a dynamical foliation of a 5D vacuum state

    Get PDF
    We introduce super exponential inflation (ω<−1\omega < -1) from a 5D Riemann-flat canonical metric on which we make a dynamical foliation. The resulting metric describes a super accelerated expansion for the early universe well-known as super exponential inflation that, for very large times, tends to an asymptotic de Sitter (vacuum dominated) expansion. The scalar field fluctuations are analyzed. The important result here obtained is that the spectral index for energy density fluctuations is not scale invariant, and for cosmological scales becomes ns(k<k∗)≃1n_s(k<k_*) \simeq 1. However, for astrophysical scales this spectrum changes to negative values ns(k>k∗)<0n_s(k>k_*) <0 .Comment: Final version, to be published in Phys. Lett.

    Extra force and extra mass from noncompact Kaluza-Klein theory in a cosmological model

    Full text link
    Using the Hamilton-Jacobi formalism, we study extra force and extra mass in a recently introduced noncompact Kaluza-Klein cosmological model. We examine the inertial 4D mass m0m_0 of the inflaton field on a 4D FRW bulk in two examples. We find that m0m_0 has a geometrical origin and antigravitational effects on a non inertial 4D bulk should be a consequence of the motion of the fifth coordinate with respect to the 4D bulk.Comment: final version to be published in EPJ

    Cosmological expansion governed by a scalar field from a 5D vacuum

    Get PDF
    We consider a single field governed expansion of the universe from a five dimensional (5D) vacuum state. Under an appropiate change of variables the universe can be viewed in a effective manner as expanding in 4D with an effective equation of state which describes different epochs of its evolution. In the example here worked the universe fistly describes an inflationary phase, followed by a decelerated expansion. Thereafter, the universe is accelerated and describes a quintessential expansion to finally, in the future, be vacuum dominated.Comment: version accepted in Phys. Lett.

    Noncompact KK theory of gravity: stochastic treatment for a nonperturbative inflaton field in a de Sitter expansion

    Full text link
    We study a stochastic formalism for a nonperturbative treatment of the inflaton field in the framework of a noncompact Kaluza-Klein (KK) theory during an inflationary (de Sitter) expansion, without the slow-roll approximation.Comment: version to be published in Phys. Lett.
    • …
    corecore