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A sublimation heat engine
Gary G. Wells1, Rodrigo Ledesma-Aguilar1, Glen McHale1 & Khellil Sefiane2,3

Heat engines are based on the physical realization of a thermodynamic cycle, most famously

the liquid–vapour Rankine cycle used for steam engines. Here we present a sublimation heat

engine, which can convert temperature differences into mechanical work via the Leidenfrost

effect. Through controlled experiments, quantified by a hydrodynamic model, we show that

levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine

geometry, temperature difference and solid material properties. The rotational motion of the

dry-ice loads is converted into electric power by coupling to a magnetic coil system.

We extend our concept to liquid loads, generalizing the realization of the new engine to both

sublimation and the instantaneous vapourization of liquids. Our results support the feasibility

of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially

relevant in challenging situations such as deep drilling, outer space exploration or

micro-mechanical manipulation.
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E
ver since the invention of water mills in antiquity, through
the development of the steam engine in the 18th century,
and up to today’s turbines, many power generators rely on

the principle of harnessing a fluid stream to drive rotational
motion. Whether it is to power a wind farm or a micro
electromechanical system, a central challenge remains the
effective conversion of fluid-flow energy into useful work despite
the friction of a bearing1,2. Heat engines add many practical
advantages to energy conversion, most notably the ability to
convert the stored chemical energy of fuels, such as coal, gas or
radioactive materials, into heat and eventually into mechanical
work. However, standard engines often involve several steps, each
decreasing the efficiency, with particular care needed to minimize
friction when a rotating turbine is involved.

Leidenfrost3 first noticed the remarkable low-friction
properties of the instantaneous vapourization of a liquid, also
known as thin-film boiling, in his 1756 ‘tract about some
common properties of water’, reporting that a small speck of dust
trapped at the interface of a levitating droplet would move ‘with a
wonderful velocity’. More recently, it has been shown that
effective directed motion of Leidenfrost drops and solids can be
achieved by rectifying the flow within their supporting vapour
layer using hot anisotropic ratchets4–7. Because the driving force
is supplied by underlying vapour, the resistance experienced by
these Leidenfrost ‘karts’ is very low8.

Harvesting thermal energy using sublimation as a phase-
change mechanism via the Leidenfrost effect is an attractive
concept, as it offers the key advantage of a virtually friction-free
bearing provided by the vapour layer. In addition, alternative,
non-traditional fuels can be used to circumvent the complications
posed by extreme temperature and pressure conditions of exotic
landscapes. For example, it has been recently suggested that, for
deep space applications, locally available resources (ices of H2O,
CO2 and CH4) on the surfaces of planetary bodies could be
sources for use in sublimation9. The abundance of such resources
is highlighted by recent reports of ‘linear gullies on Mars’ carved
by slabs of solid CO2 sliding down inclines. Such a process is
thought to occur as a consequence of seasonal variations in
the environmental temperature, which drive the sublimation of
dry-ice deposits10. This highlights that low pressures and
high temperature differences naturally occurring in exotic
environments could make energy harvesting and power
generation based on alternative heat cycles, and using locally
available ices, feasible.

In this paper, we present a sublimation heat engine that
exploits the Leidenfrost effect to convert temperature differences
into rotational motion. Our concept relies on Leidenfrost vapour
rectification by turbine-like surfaces to create low-friction
suspended rotors, and is both applicable to sublimating solids
(dry ice) and vapourizing liquids (water). Our experiments focus
on the effect of the driving temperature difference, load size and
turbine geometry. We further rationalize our results by deriving a
creeping flow hydrodynamic model, obtaining an excellent
agreement with the experiments. We also build a simple magnetic
coil generator based on a dry-ice Leidenfrost rotor, thus providing
a proof-of-concept of our method as a new means of energy
harvesting.

Results
Heat engine concept. The general concept of a heat engine,
depicted in Fig. 1a, is centred on a working substance that absorbs
a quantity of heat Qin from a hot reservoir, held at temperature
Th. Part of the heat absorbed is converted into work W, while a
quantity Qout is dissipated to a cooler reservoir held at tem-
perature Tc. The underpinning basis of our heat engine is the

achievement of Leidenfrost-based rotational motion, which we
depict in Fig. 1b. The working substance, in the present case, solid
CO2 or liquid H2O, is converted into superheated vapour by
absorbing a quantity of heat Qin supplied by a neighbouring
turbine-like surface held at a temperature Tc4TL, where TL is the
temperature of the Leidenfrost point. The released vapour is then
rectified to produce mechanical work, W, and cooled to the
original temperature Tc, giving off an amount Qout of heat to the
surroundings. This new thermal cycle is the solid-to-vapour
analogue of the liquid-to-vapour Rankine cycle, which is widely
used in steam-powered engines. However, the present cycle
involves sublimation (or thin-film boiling) as the phase change
and ensures the stabilization of a low-friction vapour layer by
keeping the temperature of the hot surface above TL. The first
quantity of interest is the theoretical thermal efficiency of the
engine. This is the maximum efficiency attainable in the absence
of operational losses. The theoretical efficiency, e�1–Qin/Qout, is
limited by the efficiency of a Carnot engine operating between the
two same heat reservoirs, e�1–Tc/Th. One approximation of
the theoretical efficiency of the Leidenfrost engine, motivated by
the approach used in a simplified Rankine cycle, is eE1–Tc/Tave,
where Tave is the average temperature between the temperature of
the working substance and the superheating temperature after the
phase change. A more precise approximation would depend on
the specific thermodynamic phase diagram of the working sub-
stance11. For example, for dry ice taking Tave¼ (TcþTh)/2, with
Th¼ 500 �C and Tc¼ � 78 �C, gives a maximum thermal
efficiency of eC0.67; such a high efficiency arises because of
the high temperature differences involved.

Experimental. For our experiments, we fabricated aluminium
turbine-like textured substrates of varying radius R with N¼ 20
asymmetric teeth using standard computer numerical control
machining (Fig. 2a). The surface of the turbines was characterized
using surface profilometry (Fig. 2a inset). Figure 2b shows the
height profile of the turbine at a fixed radius along the angular
coordinate, y. The surfaces were designed to keep the height of
the ridges, H, constant with a sweep based on a standard axial gas
turbine design. The local azimuthal length of the ridges, l, is
determined by the number of teeth, N, and increases with
increasing distance from the centre, r, that is, l(r)¼ 2pr/N.

Th

Qin

Qout

Qout Qout

Qin

Tc

W

Vapour

W

Hot turbine

Dry-ice disc

Efficiency: �=W/Q in

Figure 1 | Concept of a Leidenfrost heat engine. (a) A heat engine

operates between two reservoirs held at temperatures Th and Tc, where

Th4Tc. The engine converts part of the heat absorbed, Qin, into work,

W. The remaining energy, Qout, is dissipated to the surroundings. (b) A

Leidenfrost engine uses a hot turbine whose temperature, Th, is held above

the Leidenfrost point of a disc of dry ice. The excess pressure sustains the

levitation of the disc. The released vapour is rectified by the underlying

turbine, driving the rotation of the disc and generates mechanical work.
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Therefore, the local inclination angle of the teeth along the
azimuthal direction, y, decreases with increasing distance from
the centre, r, according to tan� 1(H/l)¼ tan� 1(R/rtana), where a
is the inclination angle at the edge, where the length of the teeth
reaches its maximum value, L¼ l(R).

Solid CO2 discs were placed on top of the turbines as shown
schematically in Fig. 3a. The turbines were pre-heated to
temperatures in the range 350 �CoTo500 �C. We identified
two distinctive regimes determined by the weight of the discs. For
large weights, Leidenfrost-induced levitation is hampered by the
underlying surface. In the experiments, this was evident by
imprints left by the turbine on the surface of the dry-ice disc.
Decreasing the mass of the loads below a critical value mc leads to
a second regime where the discs levitate freely on top of the
turbine-like surface. However, a marked difference to the familiar
Leidenfrost levitation is that the turbine-like substrates drive the
rotation of the discs along the angular direction. Figure 3a shows
a time sequence of the rotation of a 2.0 cm CO2 disc on top
of a turbine held at a temperature Th¼ 500 �C (see also
Supplementary Movie 1). Because the substrates are fixed, the
CO2 discs act as self-powered rotors. Stable rotation was achieved
by using confining rings, which help redirect the vapour flow
across the gap formed between the dry-ice disc and the ring walls.
Therefore, it is reasonable to assume that the disc is kept in a
centred position because of Bernoulli’s principle: a small

displacement of the disc towards the boundary ring causes a
higher pressure acting on the region closer to the ring, therefore
displacing the disc back to the centre. We carried out a second set
of experiments, under identical conditions, using water droplets
in place of the CO2 discs. The droplets were stabilized by placing
a hydrophilic metal plate on top of the droplet as shown in the
schematic in Fig. 3b (see also Supplementary Movie 2). As with
the CO2 discs, the Leidenfrost-induced thin-film boiling of the
droplet results in rotational motion, in this case evident by the
rotation of the top plate (Fig. 3b right panels). In both cases,
rotation occurred in the downhill direction along the teeth of the
turbine.

Model of a turbine surface and Leidenfrost rotor. To deduce the
mechanism behind the Leidenfrost rotation, we focus on the
release of vapour from the surface of the levitating rotor.
Following the recent work in refs 4,12,13, our model is based on
the vapour rectification by the underlying surface, which induces
a net viscous drag along the azimuthal direction on the levitating
dry-ice disc or water film (Fig. 4). We assume that the energy flux
across the vapour layer, qin, occurs by conduction, that is,
qinElDT/h, where DT is the temperature difference across the
vapour layer, of thermal conductivity l and thickness h. For
temperatures above the Leidenfrost point, the energy flux is
mainly expended in the phase change of the fuel (the liquid or the
ice). This allows us to estimate the speed of evaporation at the
rotor surface, nnEqin/sr¼ lDT/srh, where s is the latent heat
associated with the phase change and r is the density of the
vapour. As depicted in Fig. 4, the vapour stream is rectified by the
turbine, causing a net flow along the azimuthal coordinate and
downhill along the teeth.

To determine the flow pattern within the vapour layer, we use
the hydrodynamic mass and momentum conservation laws for an
incompressible fluid, which correspond to the familiar continuity
and Navier� Stokes equations. A dimensional analysis reveals
that the ratio of inertial to viscous forces acting on a fluid element
of vapour can be quantified by the Reynolds numbers Rer¼
rh2Ur/ZR and Rey¼ rh2Uy/Zl, corresponding to the radial and
azimuthal components of the flow. Here Ur and Uy are the typical
radial and angular velocities, and Z is the dynamic viscosity of the
vapour. From mass conservation we find Ur¼ (R/h)nn, which
eventually leads to RerElDT/Zs. This ratio is of the order 10� 2

for the material properties and temperature differences of both

α

H

L

R

l(r)

l(r)

r

α∼H/l

Figure 2 | Turbine geometry. (a) Computer numerical control (CNC)

machined aluminium turbine, composed of N asymmetric teeth (disc radius

R¼ 2 cm). Inset: colour-coded height profile. (b) Height profile along the

angular coordinate, y (top) and tooth geometry (bottom). The height of the

teeth, H, is constant. For a single tooth (bottom panel), the local azimuthal

length, l(r), increases radially outwards. Therefore, the tooth inclination

angle decreases with increasing radial distance from the centre.
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Figure 3 | Geometry and time sequence of Leidenfrost-powered rotors. (a) A disc of dry ice (R¼ 2 cm) is placed on a hot turbine-like surface

(N¼ 20, a¼0.1 and ThE500 �C). The panels show a sequence over time, showing the rotation of the disc. (b) A drop of water supporting a metal

plate is placed on top of the turbine. The drop forms a film that wets the top plate. As shown in the time sequence, the drop and the top plate rotate

as a single combined object on contact with the hot underlying surface in the counterclockwise direction, following the downhill variation of the turbine

teeth. The length of the scale bars, 1 cm.
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water and dry-ice loads (see Supplementary Table 1 for a list of
physical properties). Noting that l¼ 2pr/N, the azimuthal
Reynolds number reads Rey¼rh2oN/2pZ, where o is the
angular velocity of the disc. Using hBH, we then find ReyE0.2.
Therefore, the flow within the vapour layer is dominated by
viscous friction. Furthermore, because the vapour layer thickness,
h, is much smaller than the lateral length scale of the gap, R, we
can invoke the lubrication approximation of the hydrodynamic
equations14. The continuity and Navier–Stokes equations are
henceforth reduced to

1

r

@

@r
rh vrh ið Þþ

1

r

@

@y
h vyh ið Þ ¼ vn ð1Þ

vrh i ¼ �
h2

12Z

@p

@r
ð2Þ

and

vyh i ¼ �
h2

12Zr

@p

@y
ð3Þ

The first equation is the continuity equation averaged over the
thickness of the vapour layer, where hvri and hvyi are the local
radial and azimuthal components of the velocity field (also
averaged over the thickness of the vapour layer). The second and
third equations correspond to Darcy’s law, and determine the
relation between the local average velocity and the gradient of the
pressure field, p(r,y). Substitution of equations (2) and (3) into
equation (1) gives the following second-order partial differential
equation for the pressure field:

1

r

@

@r
rh3

@p

@r

� �

þ
1

r

@

@y

h3

r

@p

@r

� �

¼ � 12Zvn ð4Þ

The effect of the underlying tooth pattern enters in the variation
of the local thickness, and consequently in the speed of release of
the vapour, that is, h¼ h(r,y) and vn¼ vn(h(r,y)). To simplify the
mathematical problem, we consider the effect of small local
inclination angles, that is, H=l rð Þ � 1, and focus on the limit
where the height of the teeth is small compared with the typical
thickness of the vapour layer. The local layer thickness can thus
be approximated by

h yð Þ ¼ h0 1þ x
Ry tan a

H

� �

ð5Þ

where h0 is the thickness of the layer for a flat turbine and
x � H=h0 � 1. The hydrodynamic equations can be solved
perturbatively in powers of x by linearizing equation (4) and
writing

p r; yð Þ ¼ p0 rð Þþ xp1 r; yð Þþ x2p2 r; yð Þþ � � � ð6Þ

The pressure field then follows by substituting this ansatz into
equation (4), solving order by order in x. The perturbation
solution gives the leading order contributions to the flow field in
the vapour layer. For a detailed derivation of the solution of the
pressure field, we refer the reader to the Supplementary Note 1.

Because of the (approximately) uniform vapour release at the
surface of the rotor, the pressure profile decays from the centre of
the bottom surface towards the edge. This is captured by the
zeroth-order contribution to the pressure,

p0 rð Þ ¼ patm þ
3Zvn0

h30
R2 � r2
� �

ð7Þ

where vn0¼ vn(h0). This excess pressure balances the weight of
the rotor, leading to levitation, and determines the thickness of
the vapour layer h0 (ref. 4). Because the turbine substrates are not
flat, levitation is favoured when the thickness of the vapour layer
is larger than the depth of the teeth, thus avoiding contact
between the two surfaces. In our experiments, H is of the order of
hundreds of microns, we thus expect that close to the onset of
rotation the vapour layer thickness is of the same order. By setting
h0EH, we obtain a criterion for the critical mass to achieve
rotation,

mc ¼
3p

2
rf l

3
LF

R

H

� �4

ð8Þ

where lLF�(ZlDT/(srrfg))
1/3 is a Leidenfrost length scale

characterizing the competition between vapour pressure and the
weight of the rotor (of mass density rf).

We now turn our attention to the rotational motion of the
loads, which is dominated by the viscous drag acting on the
bottom surface of the rotors. From the perturbative solution of
the flow within the vapour layer, the average tangential stress
acting on the rotor surface along the angular direction is, to
leading order in the approximation, tzy � bZvn0;R

4tan3a=h50N
4,

where b is a dimensionless constant. This result is consistent with
the result of reference 13, which was derived for linear ratchets
using scaling arguments and verified numerically. The total
torque acting on the disc follows by integrating rtzy over the rotor
surface,

G ¼
c

rf g

mg

lLF

� �3=2
R tan3 a

N4
; ð9Þ

where c is a numerical constant. The torque increases with
increasing weight because the vapour layer becomes thinner,
increasing the local viscous drag. The scaling with increasing
radius arises because the drag force has both a longer moment
arm and a larger area to act on. Finally, the geometry of the
turbine substrate enters in the inclination angle a, which
determines the degree of rectification and therefore acts to
increase the torque. The number of teeth sets the periodicity of
the pattern, L¼ 2pR/N, and hampers rectification at large N.

Discussion
To test our prediction for the critical mass for rotation,
equation (8), we carried out experiments over a wide range in
the temperature difference, disc radius and average thickness of
the turbine teeth (See Supplementary Tables 2 and 3). For each
set of experimental conditions (DT, R, H), we measured the
probability of rotation of the disc, Ps(m), for a wide range in the
mass of the loads, m (typically 60 trials). The inset of Fig. 5 shows
a typical probability curve, showing the transition to rotation as
the mass of the discs is reduced. The experimental state diagram
shown in Fig. 5 confirms the scaling of the critical mass, defined
as Ps(mc)¼ 0.5, with DT(R/H)4, as predicted by equation (8).

r�

z

h

H

Viscous drag

Flow

l(r)

Vapour

film

Figure 4 | Rectification mechanism for Leidenfrost rotation. The vapour

released by the CO2 disc or the water film creates a layer of thickness h

between the surface of the turbine and the levitating surface. The

underlying pattern drives the vapour flow downhill along the teeth. The

resulting viscous drag drives the rotation of the levitating surface.
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To test the theoretical prediction for the torque acting on
Leidenfrost rotors, we carried out further experiments measuring
the angular acceleration of dry-ice discs of different mass and

radii over a range of temperature differences and teeth inclination
angles (see inset of Fig. 6 and Supplementary Table 4). We then
determined the torque from rigid-body kinematics. The resulting
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Figure 5 | State diagram for the spin-no spin transition of dry-ice rotors. Below a critical mass, discs of dry ice spin on the hot turbines (inset

illustrations). The transition is quantified in terms of the probability of a rotating load, Ps, which decreases with increasing mass (for example, the inset

figure shows the probabilities Ps for the six data points corresponding to DT(R/H)4¼ 3� 1017K in the main figure). The critical mass, indicated by the solid

line, scales linearly with DT(R/H)4 as predicted by the theory. The dotted lines correspond to 90% confidence intervals extracted from the probability

distributions.
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data, shown in Fig. 6 and Supplementary Table 5, shows an
excellent agreement (over two decades) with the proposed scaling
of equation (9). Moreover, a fit of the data gives a pre-factor
within 20% of the theoretical prediction. Such a good agreement
suggests that effects arising from inhomogeneities on the turbine
substrate and dissipative energy losses are relatively small, thus
supporting that the sublimation-based heat engine can be a new
approach to energy harvesting.

In our experimental proof-of-concept realization of a
sublimation heat engine, the conversion of the latent heat of
the phase transition into rotational motion is low in efficiency
(B10� 6). Some of the loss is due to the viscous dissipation
within the gap, some is due to the escape of gas along the turbine
edge and some is from the evaporation from the top and side
faces of the disc. However, a large fraction of the latent heat of the
phase transition, either sublimation or thin-film boiling, is used to
sustain the levitation of the disc. The total generated power can be
written as P¼Plevþ Prot, where Plev¼ (pR2patmþmg)vn0 is the
power generated to sustain levitation15 and Prot¼Go is the
power generated by rotation of the disc. The total power should
be compared with the rate of energy release due to the phase
transition, DQin

Dt
¼ sdm

dt
. The speed of release of vapour molecules,

vn0, can be found by mass conservation, that is, dm
dt

� pR2rvn0.
Using the experimentally measured values for m, R, dm/dt, G and
o, along with reported values for the physical parameters (see
Supplementary Note 1), we find DQin

Dt
’ 30 J s� 1, PlevC4.2 J s� 1

and ProtC2� 10� 5 J s� 1. The energy released by the phase
transition is therefore dominantly sustaining the levitation, an
effect that could be removed by design at the expense of
introducing friction within a bearing.

To further demonstrate the feasibility of harvesting thermal
energy using the sublimation heat engine, we constructed a
simple electric generator. By attaching a frame with eight
Neodynium magnets to a dry-ice rotor and lowering a multi-
segment induction coil system into close proximity to the rotating
assembly, we were able to generate an alternating voltage (see
Supplementary Movie 3).

The new concept of a thermal cycle based on either
sublimation or thin-film boiling introduced in this paper is
appealing because it can lead to new routes for power generation
and energy harvesting as we have demonstrated by our proof-of-
concept. Future optimized designs of a Leidenfrost-based engine
could focus on efficiency using geometries where the gap between
the disc and the turbine surface is controlled, where the precise
sweep and shape of blades are optimized and where energy losses
can be minimized by reducing the escape velocity of the vapour at
the edge of the turbine. As supported by our experiments with
water, the extension to liquid fuels can be accomplished. Further
work in this direction can focus on the design of wicking surfaces
that act as fuel-dispensing shafts.

The temperature differences occurring in space and the
abundant naturally occurring liquids and ices on planetary
bodies9 give one example where the transport of fuel is
prohibitive, but local conditions can provide all that is needed
for a sublimation engine. Given recent progress in reducing
the Leidenfrost temperature exploiting superhydrophobic
coatings16 and low pressures17, another potential field of
application is in microsystems, where high surface area-to-
volume ratios pose significant challenges for any moving part.
Here the concept of a motor exploiting the intrinsic low-friction
vapour bearing provided by thin-film boiling could have wide
applicability.

Methods
Dry-ice discs. Dry-ice discs were produced by depositing liquid carbon dioxide
(BOC) onto a snowpack dry-ice maker (VWR). The resulting dry-ice snow was

shaped into discs using a bespoke pressure mould of variable diameter. Discs were
further flattened using a commercial hot plate (VWR VMS-C7) at 150 �C.

Hot plate. The hot plate used in the experiments consisted of a machined block of
aluminium fitted with 2� 200W 1/20 0 � 30 0 cartridge heaters (RS Components)
and a K-type thermocouple to monitor the temperature. The cartridge heaters
were controlled using a Proportional-Integral-Derivative (PID) controller. The
hot plate was isolated from the working bench using ceramic pillars.

Confinement rings. Confinement rings were made from a stock steel bar and were
turned on a lathe to have a desired internal diameter and a square cross section of
5� 5mm.

Angular acceleration and torque measurements. The mass and radius of dry-ice
discs were measured immediately before each experiment. A small mark was
made on the top surface of the discs using a dry-wipe marker to allow visualization
of rotational motion. The discs were then placed on the turbine, inside the
confinement ring and filmed from above at 50 frames per second using an SVSi
MemView high-speed camera. The video files were then analyzed to determine the
period of rotation and tracked for the first six rotations. The average angular
velocity for each complete rotation was plotted as a function of time. The angular
acceleration was then extracted from these measurements. The torque was
extracted using data for the angular acceleration assuming rigid-body kinematics.

Onset of spinning. Experiments were carried out using a single turbine to
ensure the consistency of results. The dry-ice disc radius and mass were controlled
for each trial using confinement rings of different radii. For each experiment
the dry-ice disc was placed on the turbine. A disc was classed as spinning if the
disc underwent a full rotation within the first 10 s of being placed on the turbine
and sustained the rotational motion for at least five revolutions.

Turbines. Turbines were manufactured using standard computer numerical con-
trol machining from a thin sheet of aluminium.

Electromagnetic generator. The electromagnetic generator was manufactured by
laser cutting two pieces of 3-mm thick medium-density fibreboard and laminating
them together to form an eight-lobed commutator. Each lobe was fitted with a
Neodynium magnet. The commutator was fixed to the top surface of a dry-ice disc
using three small tacks.
A stator was made by winding 0.15-mm diameter varnished copper wire into
8 cylindrical coils with a core diameter of 7mm, an external diameter of 27mm
and length 12mm, with approximately 4,000 turns per coil. The coils were then
laid flat into the lobe pattern to match the commutator and fixed into place using
SampleKwick Fast cure acrylic (20-3560). Visualization of the electric signal was
performed using a standard oscilloscope.
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4. Biance, A.-L., Clanet, C. & Quéré, D. Leidenfrost drops. Phys. Fluids 15,

1632–1637 (2003).
5. Lagubeau, G., Le Merrer, M., Clanet, C. & Quéré, D. Leidenfrost on a ratchet.
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