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ABSTRACT: In 1948, Cassie provided an equation describing the wetting
of a smooth, heterogeneous surface. He proposed that the cosine of the
contact angle, θc, for a droplet on a composite surface could be predicted
from a weighted average using the fractional surface areas, f i, of the cosines
of contact angles of a droplet on the individual component surfaces, i.e., cos
θc = f1 cos θ1 + f 2 cos θ2. This was a generalization of an earlier equation for
porous materials, which has recently proven fundamental to underpinning
the theoretical description of wetting of superhydrophobic and super-
oleophobic surfaces. However, there has been little attention paid to what
happens when a liquid exhibits complete wetting on one of the surface
components. Here, we show that Cassie’s equation can be reformulated
using spreading coefficients. This reformulated equation is capable of
describing composite surfaces where the individual surface components have
negative (droplet state/partial wetting) or positive (film-forming/complete wetting) spreading coefficients. The original Cassie
equation is then a special case when the combination of interfacial tensions results in a droplet state on the composite surface for
which a contact angle can be defined. In the case of a composite surface created from a partial wetting (droplet state) surface and a
complete wetting (film-forming) surface, there is a threshold surface area fraction at which a liquid on the composite surface
transitions from a droplet to a film state. The applicability of this equation is demonstrated from literature data including data on
mixed self-assembled monolayers on copper, silver, and gold surfaces that was regarded as definitive in establishing the validity of the
Cassie equation. Finally, we discuss the implications of these ideas for super-liquid repellent surfaces.

■ INTRODUCTION
Understanding the wettability of surfaces is important for both
industrial applications, such as paints, printing, and automobiles,
and for naturally occurring surfaces, such as plants and insects.1

Many of such surfaces are often heterogeneous due to variations
in surface chemistry or surface topography, and this is often
characterized in an idealized manner by the contact angle of a
droplet, ignoring contact line pinning. For over 70 years, Cassie’s
equation (sometimes referred to as Cassie’s Law) has been a
fundamental conceptual contribution to understanding the
average contact angle on smooth, heterogeneous surfaces.2 This
equation for the contact angle, θc, of a droplet on a smooth,
heterogeneous surface composed of two materials of fractional
surface areas f1 and f 2, where the liquid forms droplets with
contact angles θ1 and θ2, states2

= +f fcos cos cosc 1 1 2 1 (1)

This equation is an extension of earlier work by Cassie and
Baxter on the apparent contact angle on porous surfaces,3 which
itself was an extension of ideas by Adam4 and Wenzel5 on
apparent contact angles on rough surfaces. On a porous
solvophobic surface, the droplet bridges across air gaps. One

contact angle in eq 1 is then 180° and the surface area fractions f1
and f 2 can be dependent on the contact angle on the solid
surface.3 In the modern era of superhydrophobic surfaces, which
commenced with the work of Onda et al.6 and Neinhuis and
Barthlott,7,8 the Cassie−Baxter version of eq 1 has underpinned
our understanding of surface wettability. This has often involved
a simplified version used for patterned topographic surfaces with
flat-topped micropillars, where

= f fcos cos (1 )CB e (2)

Here, the Cassie−Baxter (suspended state) contact angle θCB is
a weighted average using the solid surface area fraction, f, and
Young’s law contact angle, θe, given by
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=cos
( )

e
SV SL

LV (3)

where the γij are the solid−vapor (SV), solid−liquid (SL), and
liquid−vapor (LV) interfacial tensions. Equations 1 and 2 are
only valid in an average sense when the droplet contact area is
much larger than any characteristic length scale for patterns of
the wettability of the solid surface, and when effects such as
faceting and pinning at the boundaries of surface patterns can be
ignored. The original works of Cassie and Wenzel tended to
emphasize global averages for solid surface fractions and surface
roughness. However, the literature has subsequently recognized
that solid surface fractions and surface roughness r should be
interpreted as values local to the three-phase contact line and so
can be spatially varying, i.e., f = f(x) and r = r(x). For viewpoints
on the appropriateness or otherwise of the Cassie model, see the
discussion by Gao and McCarthy9 response by McHale,10 the
recent paper by Shardt and Elliott,11 and the review by Queŕe.́12

The paper by Choi et al. also provides further discussion on the
definition and calculations of solid surface fractions.13 The
utility and importance of the concept of contact angle can also be
extended to include slippery liquid-infused porous surfaces
(SLIPS)14,15 and other liquid-infused surfaces16,17 where a
droplet either rests entirely or partially on a lubricant layer.18−22

When eq 1 was first published in 1948 it was not clear whether
it would be the most appropriate theory to describe droplet
states on smooth composite surfaces. However, the work in
1992 by Laibinis andWhitesides on the wettability of composite
surfaces created from mixed self-assembled monolayers
adsorbed from solution onto surfaces of copper, silver, and
gold films appeared to settle any debate.23,24 Recently, work by
Becher-Nienhaus et al. on smooth checkerboard-like micro-
patterned hydrophobic/hydrophilic/complete wetting surfaces
with regions of matching/mismatching contact angle hysteresis
(CAH) has questioned whether eq 1 accurately describes
experimental data.25 Their surfaces used four types of surface
chemistry, encompassing hydrophobic (with low and high
CAH), hydrophilic (with low CAH), and complete wetting
properties for water droplets. In their analysis, these authors
considered both composite surfaces created using two partial
wetting surface chemistries and composite surfaces with one
partial wetting and one complete wetting surface chemistries. In
this latter case, they used eq 1 with the assumption that θ = 0° for
the complete wetting surface component. This is unusual from
the point of view of interfacial energies because once complete
wetting occurs, there is no longer a well-defined equilibrium
contact angle. Thus, to suggest different liquids giving complete
wetting could all be characterized by a single contact angle of θ =
0° would be inconsistent, as discussed below.
For liquids spreading on ideal smooth flat solids in the

presence of vapor, the spreading coefficient, SLS(V), can be
defined as the difference between the interfacial energy per unit
area for a bare solid surface and one coated with a thin liquid
film,1,26 i.e.,

= +S ( )LS(V) SV SL LV (4)

In defining eq 4, we recognize that achieving ideal clean solid
surfaces can be difficult experimentally due to contaminants and
that estimates of the interfacial tension between a solid and a
liquid are obtained via related equations, as discussed byHarkins
and Feldman and others.1,24,26 From the lowest energy
considerations, the spreading coefficient in eq 4 is negative for

partial wetting droplets and greater than or equal to zero for
liquid films. In this latter case, a range of surfaces, each with a
different positive value of SLS(V), may induce a liquid to spread,
but it would not be reasonable to conclude that all correspond to
a wetting state with θ = 0°. When the spreading coefficient is
negative and a partially wetting droplet is observed, it is possible
to write a relationship between the spreading coefficient and the
contact angle

= +
S

cos 1LS(V)

LV (5)

Thus, eq 5 defines a physical contact angle, θ, for an
equilibrium droplet using the interfacial tensions via eq 4. By
definition, the requirement for an equilibrium droplet shape
restricts the cosine of the contact angle to the range −1 ≤ cos θ
≤ + 1. However, from an interfacial tension perspective, the
right-hand side of eq 5 can have values that lead to a number for
“cos θ” outside this restricted range, although a corresponding
contact angle, θ, cannot then be calculated. For example, if the
interfacial tensions combine in eq 4 to give a spreading
coefficient which is positive, eq 5 implies cos θ > 1. Physically,
there is no partial wetting droplet and, hence, no equilibrium
value of contact angle θ, although there will be a liquid film.
Allowing eq 5 to be generalized to allow numerical values greater
than unity for “cos θ” suggests a possible approach to using the
Cassie equation for a component surface with a complete
wetting surface chemistry. Here, we show that this leads to a
physically meaningful description of the wetting of composite
surfaces with both droplet and film-forming surface compo-
nents.
In the remainder of this article, we use a minimization of

surface free energy approach to derive a version of the Cassie
equation formulated using spreading coefficients. We then show
the consistency of our reformulated equation with Cassie’s
original equation for the case where both surface components
have negative spreading coefficients corresponding to droplet
states. We also show that when one surface component has a
positive spreading coefficient corresponding to a superspreading
film state, there is a condition on the surface fraction ratio at
which a transition from a droplet to a film state occurs on the
composite surface. We then reinterpret literature data showing
that such transitions exist and consider how recent experimental
data can be reconciled with or provide challenges to the Cassie
equation. Finally, we consider the extreme limit when droplets
on composite surfaces exhibit complete non-wetting and argue
that the strength of superhydrophobicity of such surfaces is not
all equal.

■ THEORY�CASSIE’S LAW REFORMULATED
Interfacial Energies for a Smooth Composite Surface.

For simplicity, we consider here a composite surface with two
surface components and use a two-dimensional model.
However, the model can be generalized to multiple surface
components and a three-dimensional model. We also follow the
assumptions used in previous considerations of Cassie, Cassie−
Baxter and Wenzel formulations, which assume the influence of
patterns of wettability can be averaged out when considering
minimum surface energy states for droplets. Such assumptions
clearly break down when the droplet contact area is on similar
length scales to any surface pattern or where strong pinning or
faceting occurs.10,13,27
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We now consider a smooth surface composed of two surface
chemistries each with their own solid−liquid and solid−vapor
interfacial energies. Since interfacial tensions are energies per
unit area, we assume they are additive. We therefore write the
corresponding interfacial energies of the composite surface in
the vicinity of a three-phase contact line location x as

= +f x f x( ) ( )S L 1 S L 2 S Lc 1 2 (6)

and

= +f x f x( ) ( )S V 1 S V 2 S Vc 1 2 (7)

where f1(x) and f 2(x) are the local surface area fractions and
satisfy f1(x) + f 2(x) = 1. To determine whether a droplet on the
composite surface is in local equilibrium, we consider a small
change in position Δx of the three-phase contact line at a
location x. At the solid surface, this interchanges solid−vapor
and solid−liquid interfacial energies, giving a change in
interfacial energy of x( )S L S Vc c

. In addition, the liquid−
vapor interfacial area changes byΔx cos θc(x), where θc(x) is the
local value of the contact angle at the contact line, and so the
associated change in liquid−vapor interfacial energy is γLVΔx
cos θc(x). The total change in surface free energy, ΔE, is then

= +E x x x( ) cos ( )S L S V LV cc c (8)

which indicates that the contact line is at a local minimum in
energy when ΔE = 0, i.e.,

=xcos ( )
( )

c
S V S L

LV

c c

(9)

Equation 9 is in the form of Young’s law for a partially wetting
droplet with an equilibrium contact, but, importantly, there has
been no explicit requirement that a partially wetting droplet
exists on either of the two component surfaces individually.
We now substitute eqs 6 and 7 into 9 and group the solid−

liquid and solid−vapor interfacial tensions

= +x
f x f x

cos ( )
( )( ) ( )( )

c
1 S V S L

LV

2 S V S L

LV

1 1 2 2

(10)

To obtain Cassie’s law (eq 1), we could require the
combinations of interfacial tensions for each component surface
to satisfy Young’s law, i.e.,

=xcos ( )
( )

i
S V S L

LV

i 1

(11)

However, if we do that, we do not have to impose the
additional condition that θi(x) has to have a physical value
corresponding to a partially wetting droplet. In principle, the
combinations of interfacial tensions in eq 11 do not require the
restriction −1 ≤ cos θi(x) ≤ 1.
Cassie’s Law Using Spreading Coefficients. To obtain a

general case describing component surfaces with droplet- or
film-forming wetting properties, we group interfacial tensions in
eq 10 into combinations representing spreading coefficients, i.e.,

=

+ +

x
f x

f x

cos ( )
( )( )

( )( )
1

c
1 S V S L LV

LV

2 S V S L LV

LV

1 1

2 2

(12)

Using eq 4 for each component surface gives

= + +x
f x S f x S

cos ( )
( ) ( )

1c
1 LS (V)

LV

2 LS (V)

LV

1 2

(13)

or, more generally,

= +S f x S f x S( ) ( )LS (V) 1 LS (V) 2 LS (V)c 1 2 (14)

In this reformulation of Cassie’s equation, the assumption that
the wetting of a composite surface behaves as surface area-
weighted averages for the solid−liquid and solid−vapor
interfacial energies leads to a surface area-weighted average for
the spreading coefficients. Equation 14 is a key result of this work
and represents a generalized Cassie equation for composite
surfaces; the equation can be simply extended to surface area-
weighted averages of more than two component types.
There are three physical cases for the wetting properties of the

component surfaces described by eq 14: (a) partial wetting for
both (i.e., droplet-forming surfaces), (b) complete wetting for
both surfaces, and (c) partial wetting for one surface and
complete wetting for the other surface (i.e., a droplet-forming
and a film-forming surface), (see Figure 1).

Surfaces Where Both Surface Components Are Partially
Wetting. In this case, both spreading coefficients for the
component surfaces are negative, i.e., <S 0LS (V)1

and
<S 0LS (V)2

, and so, the spreading coefficient of the composite
surface is also negative, i.e., <S 0LS (V)c

. Physically, if a droplet on
each component surface has a physically meaningful contact
angle given by eq 11 (or equivalently eq 5), so does the droplet
on the composite surface. Equation 14 could be written in the
same form as eq 1 as a surface area fraction weighted average of
cosines, with the surface area fractions being the appropriate
values at the three-phase contact line of the droplet on the
composite surface. However, there is also an interesting
possibility of whether a composite surface might have a
spreading coefficient corresponding to cos θc(x) < −1 when
the cosine is calculated using combinations of interfacial
tensions, i.e.,

= + <x
S

cos ( ) 1 1c
LS (V)

LV

c

(15)

We consider this possibility, related to the question “How
superhydrophobic can a completely nonwetting surface be?”, at the
end of our Discussion section.

Surfaces Where Both Surface Components Are Completely
Wetting. In this case, both spreading coefficients for the
component surfaces are greater than or equal to zero, i.e.,
S 0LS (V)1

and S 0LS (V)2
, and so the spreading coefficient of

the composite surface is also greater or equal to zero, i.e.,
S 0LS (V)c

. Physically, a droplet on each component surface

Figure 1. Three types of composite surfaces. (a) Two droplet-forming
surface components, (b) two film-forming surface components, and (c)
one droplet and one film-forming surface component.
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would be a film and would not have a physically meaningful
equilibrium contact angle given by eq 11 (or equivalently eq 5)
unless the spreading coefficients were exactly equal to zero (in
which case the contact angles would be 0°). Writing eq 14 in the
same form as eq 1 as a surface area fraction weighted average of
cosines with 0° for the two component surfaces would be a
misleading characterization of the wetting properties of the
composite surface. This is because different composite surfaces
can have different values of the spreading coefficient, while each
spreading coefficient remains positive. Increasingly positive
spreading coefficients correspond to increasing differences in the
interfacial energy difference per unit area between a bare surface
and a liquid-coated surface and drive spreading (see eq 4). This
has physical implications in, e.g., the driving of superspreading of
a droplet from an out-of-equilibrium droplet state and the
evolution of the dynamic contact angle.28 Allowing for
superspreading, eq 1 would need to interpret the cosine of the
contact angle as the physically meaningful quantity calculated
through a combination of interfacial tensions and not through a
measurable contact angle, i.e.,

= + >x
S

cos ( ) 1 1c
LS (V)

LV

c

(16)

Surfaces Where One Component Is Partially Wetting and
One Is Completely Wetting. In this case, we consider (without
loss of generality) a composite surface where the first
component surface is partial wetting, i.e., <S 0LS (V)1

, and the
second is complete wetting, i.e., S 0LS (V)2

. Here there is
competition between droplet-forming and film-forming proper-
ties, and so, there will be specific surface fractions at which the
composite surface will transform from supporting a droplet state
with <S 0LS (V)c

to a film state with S 0LS (V)c
. Physically, this

seems reasonable, as increasing the proportion of surface with
film-forming properties compared to the proportion with
droplet-forming properties should eventually overcome the
droplet-forming tendencies of the composite surface. To
consider the conditions under which a smooth composite
surface transforms from droplet-forming to film-forming
tendencies, in eq 14, we set f 2 = f, f1 = 1 − f and use subscripts
“d” (for droplet-forming) and “f” (for film-forming) for
component surfaces 1 and 2, respectively, i.e.,

= +S f S fS(1 )LS (V) LS (V) LS (V)c d f (17)

The threshold surface area fraction, f T, for a film to be induced
on the composite surface is when the spreading coefficient for

the composite surface increases to zero as the area fraction of the
film-forming component of the surface is increased, i.e.,

+ =f S f S(1 ) 0T LS (V) T LS (V)d f (18)

This gives a threshold value of the film-forming area fraction
as

=f
S

S ST
LS (V)

LS (V) LS (V)

d

f d (19)

For composite surfaces with f < f T, we can replace two of the
spreading coefficients in eq 17 by their contact angles, i.e.,

= +f fS(cos 1) (1 ) (cos 1)LV c LV d LS (V)f

(20)

This can be re-written as

= + +f Scos cos ( / (1 cos ))c d LS (V) LV df (21)

and so, the threshold surface area fraction for film formation on
the composite surface is given in terms of a measurable droplet
contact angle, θd, on the first surface component as

=
+

f
(1 cos )

(1 cos )
ST

d

d
LSf (V)

LV (22)

Using eq 5 to define a cos θf in terms of the interfacial tensions,
this is equivalent to

=f
(1 cos )

(cos cos )T
d

f d (23)

Experimentally, if it is possible to create a set of composite
surfaces with different film-forming surface area fractions, f, and
measure the contact angles on the composite surface, eq 21
allows the spreading coefficient for the film-forming surface
component scaled by the liquid−vapor surface tension, SLf(V)/
γLV, to be determined from the slope of a graph of cos θc versus f.
Alternatively, this can be determined by identifying the surface
area fraction for the transition from a droplet-forming to a film-
forming composite surface. If we also know the liquid−vapor
interfacial tension and the solid−liquid interfacial tension for the
film-forming component of the surface, the solid−vapor
interfacial tension for the film-forming component of the
surface could be calculated.

Figure 2.Data for contact angles of water droplets on mixed self-assembled monolayers (adapted from Laibinis and Whitesides.23 Copyright 1992 by
the American Chemical Society). Comparison of monolayers adsorbed on copper, silver, and gold from mixtures of HS(CH2)11OH and
HS(CH2)11CH3 dissolved in (a) ethanol after 2 h exposure, and (b) isooctane after 1 h exposure. Surface compositions were determined by XPS and
assumed to be equivalent to surface area fractions.
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■ DISCUSSION OF LITERATURE DATA
Mixed Self-AssembledMonolayer Composite Surface.

Historically, the experiments by Laibinis and Whitesides23 on
the wetting by droplets of water of self-assembled mixed
monolayers of the hydrophobic thiol HS(CH2)11CH3 and the
hydrophilic thiol HS(CH2)11OH deposited from solutions using
ethanol or isooctane onto freshly deposited evaporated copper,
silver, and gold films are regarded as establishing the validity of
the original Cassie equation.24 From our perspective, these are
particularly interesting datasets because they use a hydrophobic
methyl termination and a hydrophilic hydroxyl termination for
the two surface components. Moreover, the surface composi-
tions, χSurf, were determined by X-ray photoelectron spectros-
copy (XPS) and shown to vary from 0 to 1 for the hydroxyl
surface component, χOHSurf. These surfaces were prepared from a
mixed solution of the two thiols, i.e., they did not have a specific
surface pattern with distinct hydrophobic and hydrophilic
regions. Thus, the assumption in the Cassie equation that the
length scale of any surface patterning is less than the scale of a
droplet contact area is likely to be satisfied unless there is
significant natural clustering into islands occurring in the self-
assembly process. In applying the Cassie model, it is assumed the
interfacial energies are additive, and while this is accepted for
macroscopic models of capillarity, it may be challenged at a
molecular level. The water contact angle measurements in the
data were also reported as advancing, θa, and receding, θr,
contact angle measurements rather than simply static contact
angles.
Figure 2 reproduces the two key graphs (Figures 2c and 3c)

from the original paper by Laibinis andWhitesides.23 These data
show the measured advancing contact angles (solid symbols)
and receding contact angles (open symbols) for water droplets
on mixed monolayers deposited from mixtures of −CH3- and
−CH2OH-terminated thiols in ethanol or iso-octane, respec-
tively, onto gold, silver, and copper films and their dependence
on the hydroxyl surface composition, χOHSurf. The authors of ref 23
comment that they assume that the fractional surface areas of
hydroxyl and methyl groups are equivalent to the surface
compositions obtained by XPS in the systems they report. The
solid lines on each figure are the original authors’ illustration that
Cassie’s equation (eq 1) was a better description of the data than
an alternative equation suggested by Israelachvili and Gee29

(dashed lines).

To be explicit about the relationship to Cassie’s equation (eq
1), θ2 = θOH is the contact angle on a surface with 100% hydroxyl
groups, =1 CH3

, is the contact angle on a surface with 100%
methyl, and the surface area fractions of the component surfaces
are f 2 = χOHSurf and = =f 11 CH

Surf
OH
Surf

3
, i.e.,

= +cos (1 )cos cosOH
Surf

CH OH
Surf

OH3 (24)

In eq 24, the contact angles are either the advancing or the
receding contact angles. Laibinis and Whitesides did not state
that the solid lines through the data points were best fits through
some specific range of the data points or give specific fitting
equations for these lines. We therefore assume they were visual
guides to the eye, showing that linear relationships and the
expected trends with composition justified the Cassie equation
(eq 1 or, equivalently, eq 24) as the most consistent description
of the data. We therefore re-examined the solid lines in Figure 2
and determined the values of cos CH3

and cos θOH for eq 24 for
each solid line (Table 1); these give contact angles entirely
consistent with the values of water contact angles for monolayers
of HS(CH2)11CH3 and HS(CH2)11OH reported in Table 1 of
Laibinis and Whitesides.23 The first column in Table 1 identifies
the solvent in the solution from which the self-assembled
monolayer (SAM) was deposited to create the surface. The
receding contact angle data can only be fitted using cos θOHr > 1,
corresponding to a non-physical receding contact angle on the
hydroxyl surface component. Visually, in Figure 2, the solid lines
through the receding contact angle data for the composite
surfaces cross the y-axis at cos θ = 1 when the surface
composition of the hydrophilic hydroxyl surface component is
χOHSurf = 0.86 ± 0.02. Thus, increasing the hydrophilic hydroxyl-
group terminated surface component eventually has a stronger
influence than the hydrophobic methyl-group terminated
surface component and transforms the mixed SAM surface
into one with film-forming properties. Moreover, it is able to do
so without needing to have a 100% hydrophilic hydroxyl-group
terminated surface because the spreading coefficient SLOH(V) > 0
for receding experiments.
Lithographically PatternedComposite Surfaceswith a

Superhydrophilic Component.We now consider the recent
data reported by Becher-Nienhaus et al.25 which used smooth
checkerboard-like micropatterned hydrophobic/(super)-
hydrophilic surfaces and which they suggested was not well-

Table 1. Parameters Required in the Cassie Equation to Fit Laibinis andWhitesides23 Data for Wetting of Mixed Self-Assembled
Monolayers by Droplets of Water

SAM solution contact angle type cos θCHd3
cos θOH cos θCHd3

(deg) θOH (deg) threshold χOHSurf

ethanol advancing −0.42 ± 0.02 0.96 ± 0.01 115 ± 1 16 ± 2 1.03 ± 0.02
ethanol receding −0.18 ± 0.02 1.19 ± 0.01 100 ± 1 N/A 0.86 ± 0.02
isooctane advancing −0.41 ± 0.01 0.88 ± 0.01 114 ± 1 28 ± 2 1.09 ± 0.02
isooctane receding −0.14 ± 0.01 1.13 ± 0.01 98 ± 1 N/A 0.90 ± 0.02

Table 2. Data from Binary Micropatterned Surfaces by Becher-Nienhaus et al25

θa/θr (deg)

D4
H/Si−OH ODS/Si−OH

size (μm) calcd ref 25 exptl cos θa/cos θr calcd ref 25 exptl cos θa/cos θr
2 43/41 (36 ± 2)/(11 ± 2) (0.81 ± 0.02)/(0.982 ± 0.007) 45/42 (48 ± 4)/(10 ± 3) (0.67 ± 0.05)/(0.985 ± 0.006)
5 51/49 (46 ± 3)/(9 ± 2) (0.70 ± 0.03)/(0.988 ± 0.006) 53/49 (52 ± 3)/(9 ± 2) (0.62 ± 0.05)/(0.988 ± 0.006)
10 56/54 (49 ± 2)/(9 ± 2) (0.66 ± 0.03)/(0.988 ± 0.006) 59/54 (62 ± 2)/(9 ± 2) (0.47 ± 0.03)/ (0.988 ± 0.006)
20 65/62 (56 ± 2)/(8 ± 2) (0.56 ± 0.03)/(0.990 ± 0.005) 68/63 (75 ± 3)/(9 ± 2) (0.26 ± 0.05)/ (0.988 ± 0.006)
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described by the Cassie equation. The pattern sizes were 2, 5, 10,
and 20 μm,with regions of matching/mismatchingCAH created
using chemisorption and photopatterning of monolayers. Their
experiments involved binary composite surfaces using combi-
nations of four surface chemistries: (i) monolayers of hydro-
phobic 1,3,5,7-tetramethylcyclotetrasiloxane on silicon (D4

H,
low CAH), (ii) monolayers of octadecyltrimethoxysilane on
silicon (ODS, high CAH), (iii) superhydrophilic Si−OH by
photodecomposition of D4

H or ODS monolayers on silicon, and
(iv) hydrophilic 2-[methoxy(polyethyleneoxy)6-9propyl]-tri-
methoxysilane monolayers on silicon (PEG, low CAH).
We first consider the experimental data for the binary

composite surfaces involving the superhydrophilic Si−OH
surface component with the two hydrophobic surface
components (D4

H or ODS). The data published by Becher-
Nienhaus et al.25 is reproduced in Table 2 with two additional
columns we have added to show the cosine values of the
experimentally obtained advancing and receding contact angles.
To calculate values using Cassie’s (eq 1), Becher-Nienhaus et al.
used advancing contact angles of θa = 103° ± 2°, θa = 110° ± 3°
and θa = 0°, and receding contact angles of θr = 98° ± 3°, θr = 99°
± 3° and θr = 0° for D4

H, ODS, and Si−OH, respectively. The
use of advancing and receding contact angles of 0° for the Si−
OH surfaces was based on the observation that spreading occurs.
However, this would mean that the spreading coefficient for the
surface was precisely equal to unity, i.e., SLSi−OH(V) = 0, which is
unlikely to be the case. We therefore believe the differences
between their calculated contact angles using Cassie’s equation
(eq 1) and the measured ones for composite surfaces using Si−
OH arise from an (incorrect) implicit assumption that the
spreading coefficient on Si−OH is zero rather than greater or
equal to zero. An important consequence of this is that it reduces
the data set against which comparisons to the Cassie law, eq 1,
can be made and hence confidence in conclusions that might be
deduced.
We now focus on whether the trends in the advancing and

receding contact angles on each composite surface using Si−OH
follow expectations from Cassie’s equation. To do so, we
consider whether data can be fitted to a linear equation
analogous to eq 24, i.e.,

= +f fcos (1 )cos cosSi OH drop Si OH Si OH (25)

where θdrop is the contact angle on the other surface component,
i.e., D

H
4
or θODSH . Figure 3 shows the fits of eq 25 to the

experimental data for the advancing contact angles on D4
H/Si−

OH and ODS/Si−OH (lines through the solid symbols). This
shows a reasonable linearity consistent with expectations from
eq 25, albeit with the limited data set of only four Si−OH surface
fractions. Moreover, these fits reproduce the measured
advancing contact angles on D4

H/Si−OH surfaces to within 2°
and on ODS/Si−OH surfaces to within 3°, i.e., agreement is
within the reported experimental error on the measured values.
From the fits, we also deduce that the advancing contact angles
of the partially wetting surface components in the composite
D4

H/Si−OH and ODS/Si−OH surfaces are = °88D
H

4
and θODSH

= 129°, respectively. These are different from the values of
= ± °103 2D

H
4

and θODSH = 110 ± 3°, respectively, reported by
Becher-Nienhaus et al.25 It can be argued that the fits here give
an unrealistically high advancing contact angle for θODSH unless
the surface has some roughness. However, given the limitation of
having only four data points, our main comment is that the
trends are consistent with eq 25. Another possible explanation of
this difference from the experimental perspective is that the
values reported in the paper were measured on complete
monolayers, which had not been subsequently subjected to the
masking and exposure process used to photo-decompose areas
to create the Si−OH component of the composite surfaces. We
cannot therefore be certain that these reported values for the
advancing (or receding) contact angles on the D4

H and ODS
surfaces reflect their values on the D4

H and ODS surface
components of the composite surfaces. The challenge this
discussion highlights is that a key challenge is to achieve a richer
data set to allow more reliable comparisons. Figure 3 also shows
the fits to the advancing contact angle data give cos θSi−OH = 1.01
and cos θSi−OH = 1.08 for the Si−OH of the D4

H/Si−OH and
ODS/Si−OH surfaces, respectively, thus confirming the Si−OH
surface components have superspreading properties, i.e.,
spreading coefficients above the threshold of 1 necessary for
complete wetting.
We now consider the receding contact angle data (open

diamonds and open circles) in Figure 3. For these data points,
there is no obvious dependence on the Si−OH surface fraction.
The measured receding contact angles vary between 9 and 11°
which corresponds to cos θr varying from 0.98 to 0.99, i.e.,
essentially cos θr is constant and∼1 (see Table 2). It is therefore
plausible that these composite surfaces were behaving
consistently with a surface whose surface fraction of the
complete wetting component (Si−OH) was beyond the
threshold value for complete wetting despite the small, finite
receding contact angles reported.
Lithographically PatternedComposite Surfaceswith a

Partially Wetting Hydrophilic Component. A similar
consideration of data can be performed for the advancing and
receding contact angles on each composite surface using PEG.
In this case, the relevant equation to consider is

= +f fcos (1 )cos cosPEG drop PEG PEG (26)

where θdrop is the contact angle on the other surface component,
i.e., D

H
4
or θODSH . In Figure 4, solid square symbols show the

advancing contact angles and open symbols show the receding
contact angles on the ODS/PEG surface. The solid lines show
fits through these data points using θODS = 106° and θPEG = 31°
for the advancing contact angle data and are θODS = 65° and θPEG
= 37° for the advancing contact angle data on the ODS/PEG
surface. This compares to advancing contact angles of θODS =

Figure 3. Advancing and receding contact angle data for water droplets
on checkerboard-like composite surfaces (data from Becher-Nienhaus
et al.25). Advancing contact angles on D4

H/Si−OH surfaces are shown
as solid diamond symbols (◆◆◆) and on ODS/Si−OH surfaces are
shown as solid circle symbols (●●●). The corresponding data for
receding contact angles is shown using open symbols. The solid lines
are fits of eq 25 to the data for advancing contact angles.
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110± 3° and θPEG = 40± 1° and receding contact angles of θODS
= 99 ± 3° and θPEG = 36 ± 1° on monolayer surfaces. We
conclude from this data that Cassie’s equation may describe the
data, but that the contact angle for the hydrophobic ODS
appears much reduced compared to its value from a uniform
monolayer. In contrast, the D4

H/PEG composite surface is not
well-described by Cassie’s equation. In Figure 4, filled triangle
symbols show the advancing contact angles, and open triangle
symbols show the receding contact angles on the D4

H/PEG
composite surface. For this surface, the data appears insensitive
to the PEG surface area fraction, which is inconsistent with
Cassie’s equation. From the experimental perspective, one
possible explanation is that the method of preparation of
composite samples involving PEG may have led to changes in
theODS/D4

H surface components. In particular, maskingODS/
D4

H monolayers, photo-decomposing selected regions to create
SiOH regions, and then chemisorbing PEG may have changed
the ODS/D4

H regions. For example, PEG molecules could
physisorb on top of the D4

H and ODS monolayers or chemisorb
on empty patches of the incomplete monolayers of D4

H and
ODS (or on parts damaged during the patterning through the
photomask), and therefore the contact angle on the hydro-
phobic parts of the patterns could be lower than expected based
on the non-patterned D4

H.
Composite Surfaces That Are Beyond the Threshold

for Superhydrophobicity. Our reformulation of Cassie’s
equation using spreading coefficients (eq 14) illustrates that it is
possible, in principle, to consider composite surfaces with a wide
range of values of cos θc, which do not need to all correspond to
physical values of contact angles in the range 0° ≤ θc < 180°. In
particular, when one or both surfaces have positive spreading
coefficients, a composite surface can be created with a positive
spreading coefficient, i.e., film-forming properties with cos θc >
1. Such a situation is possible because suitable combinations of
surface chemistry and liquids exist. In contrast, the other
extreme with cos θc < −1 does not appear physically possible for
water on a smooth, heterogeneous surface in air (or vapor)
because hydrophobic −CF3-terminated surface coatings tend to
have static contact angles around or below 120°. To achieve
highly non-wetting surfaces with contact angles approaching
180°, i.e., cos θc → −1, either nano/micro-scale topographic
structure is used to amplify the effect of hydrophobic surface
chemistry into superhydrophobicity6−8 or a Leidenfrost effect
vapor layer is used.30

Cassie and Baxter’s work in 1944, which preceded the
development of eq 1 for heterogeneous smooth composite
surfaces, considered a (superhydrophobic) model for porous
surfaces using water on a parallel array of fibers.3 In this case, the
wetting on the solid portion of the surface includes a Wenzel
roughness factor r which transforms the contact angle from its
value on a smooth surface into a new value

= rcos cosw 1 (27)

Thus, if surface component 1 is a rough surface for which the
liquid remains in contact at all points (i.e., in a Wenzel state),
and surface 2 is a smooth surface, Cassie’s equation becomes31,32

= +f fcos cos cosc 1 w 2 2 (28)

where f1 + f 2 = 1. To consider a superhydrophobic surface, we set
surface component 2 as air, f 2 = f LV as the liquid−vapor surface
fraction and θ2 = 180°, so that eq 28 becomes

= f fcos (1 )cosc LV w LV (29)

When the value of cos θw corresponds to a physical contact
angle, eq 29 predicts an approach to complete non-wetting, i.e.,
θc → 180°, only occurs as the liquid−vapor surface fraction
tends to unity, i.e., f LV → 1. This corresponds to a suspended
droplet in a superhydrophobic state. However, in principle, cos
θc < −1 is possible when the surface roughness of the solid
component satisfies <r 1

cos s
, where θs is the contact angle on

the smooth solid surface. It therefore appears that rough
hydrophobic solids in the Wenzel state, combined with a larger-
scale texture that suspends a droplet across air gaps, could
provide surfaces that display complete non-wetting (apparent
contact angles of 180°) but should not be regarded as equivalent
to each other. For these surfaces, increasing roughness for the
solid component allows the surfaces to be classified based on
their overall values of effective spreading coefficients. We also
note that while it is a common experimental observation that
droplets in Wenzel states suffer from contact line pinning, it is
now possible to create slipperyWenzel states so that a droplet on
these rough-textured surfaces could remain entirely mobile.33

■ CONCLUSIONS
In this work, we have developed a description of the wetting
properties of smooth composite surfaces with droplet- and film-
forming surface components. We have reformulated Cassie’s
equation using spreading coefficients so that the overall
spreading coefficient on a composite surface is a surface area-
weighted average of the spreading coefficients on the
component surfaces, where the area averages are evaluated at
the contact line (see eq 14). We have shown that Cassie’s
original equation can be generalized by defining cos θ using
combinations of interfacial tensions and allowing it to include
values that do not correspond to measurable contact angles but
which are meaningful in classifying film-forming surfaces with
different spreading coefficients. We have also shown there is a
threshold surface area fraction for the superspreading (film-
forming) component for a composite surface with a partial
wetting (droplet-forming) surface component at which a film
will be created (see eqs 19 and 22). We have further shown how
this enables the spreading coefficient for superspreading surface
chemistry to be obtained from contact angle measurements by
using composite surfaces with increasing fractions of the
superspreading component. These ideas have been tested
against literature data and have been used to explain aspects of

Figure 4. Advancing and receding contact angle data for water droplets
on checkerboard-like composite surfaces (data from Becher-Nienhaus
et al.25). Advancing contact angles on D4

H/PEG surfaces are shown as
solid triangle symbols (▲▲▲) and on ODS/PEG surfaces are shown
as solid square symbols (■■■). The corresponding data for receding
contact angles is shown using open symbols. The solid lines are fits of eq
26 to the data for advancing and receding contact angles on the ODS/
PEG surfaces.
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that data not previously commented upon. Finally, we have
discussed the case of a composite surface with spreading
coefficients, which can be interpreted as a surface beyond
complete non-wetting (more than superhydrophobic). Our
work provides a conceptual framework for the wetting
properties of composite surfaces composed of both droplet
and film-forming surface components.

■ AUTHOR INFORMATION
Corresponding Author

Glen McHale − Institute for Multiscale Thermofluids, School of
Engineering, The University of Edinburgh, Edinburgh EH9
3FB, U.K.; orcid.org/0000-0002-8519-7986;
Email: glen.mchale@ed.ac.uk

Authors
Rodrigo Ledesma-Aguilar − Institute for Multiscale
Thermofluids, School of Engineering, The University of
Edinburgh, Edinburgh EH9 3FB, U.K.; orcid.org/0000-
0001-8714-0556

Chiara Neto− School of Chemistry and the University of Sydney
Nano Institute, The University of Sydney, Sydney, New South
Wales 2006, Australia; orcid.org/0000-0001-6058-0885

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.langmuir.3c01313

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
G.M. would like to thankDr. D. Orejon andDr. S. Armstrong for
discussions on the concept of composite superspreading
surfaces. C.N. acknowledges funding from the Australian
Research Council (FT180100214).

■ REFERENCES
(1) de Gennes, P. G.; Brochard-Wyart, F.; Quéré, D. Capillarity and
Wetting Phenomena; Springer: New York, 2004.
(2) Cassie, A. B. D. Contact Angles. Discuss. Faraday Soc. 1948, 3, 11.
(3) Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans.
Faraday Soc. 1944, 40, 546.
(4) Adam, N. K. The Physics and Chemistry of Surfaces. The Physics
and Chemistry of Surfaces; Oxford University Press: London, 1941; p
186.
(5) Wenzel, R. N. Resistance of Solid Surfaces to Wetting by Water.
Ind. Eng. Chem. 1936, 28, 988−994.
(6) Onda, T.; Shibuichi, S.; Satoh, N.; Tsujii, K. Super-Water-
Repellent Fractal Surfaces. Langmuir 1996, 12, 2125−2127.
(7) Neinhuis, C.; Barthlott, W. Characterization and Distribution of
Water-Repellent, Self-Cleaning Plant Surfaces. Ann. Bot. 1997, 79,
667−677.
(8) Barthlott, W.; Neinhuis, C. Purity of the Sacred Lotus, or Escape
from Contamination in Biological Surfaces. Planta 1997, 202, 1−8.
(9) Gao, L.; McCarthy, T. J. How Wenzel and Cassie Were Wrong.
Langmuir 2007, 23, 3762−3765.
(10) McHale, G. Cassie and Wenzel: Were They Really so Wrong?
Langmuir 2007, 23, 8200−8205.
(11) Shardt, N.; Elliott, J. A. W. Gibbsian Thermodynamics of
Cassie−Baxter Wetting (Were Cassie and Baxter Wrong? Revisited).
Langmuir 2018, 34, 12191−12198.
(12) Quéré, D. Wetting and Roughness. Annu. Rev. Mater. Res. 2008,
38, 71−99.
(13) Choi,W.; Tuteja, A.; Mabry, J. M.; Cohen, R. E.;McKinley, G. H.
A Modified Cassie−Baxter Relationship to Explain Contact Angle

Hysteresis and Anisotropy on Non-Wetting Textured Surfaces. J.
Colloid Interface Sci. 2009, 339, 208−216.
(14)Wong, T.-S.; Kang, S. H.; Tang, S. K. Y. Y.; Smythe, E. J.; Hatton,
B. D.; Grinthal, A.; Aizenberg, J. Bioinspired Self-Repairing Slippery
Surfaces with Pressure-Stable Omniphobicity. Nature 2011, 477, 443−
447.
(15) Lafuma, A.; Quéré, D. Slippery Pre-Suffused Surfaces. Europhys.
Lett. 2011, 96, 56001.
(16) Smith, J. D.; Dhiman, R.; Anand, S.; Reza-Garduno, E.; Cohen, R.
E.; McKinley, G. H.; Varanasi, K. K. Droplet Mobility on Lubricant-
Impregnated Surfaces. Soft Matter 2013, 9, 1772−1780.
(17) Peppou-Chapman, S.; Hong, J. K.; Waterhouse, A.; Neto, C. Life
and Death of Liquid-Infused Surfaces: A Review on the Choice,
Analysis and Fate of the Infused Liquid Layer. Chem. Soc. Rev. 2020, 49,
3688−3715.
(18) Semprebon, C.; McHale, G.; Kusumaatmaja, H. Apparent
Contact Angle and Contact Angle Hysteresis on Liquid Infused
Surfaces. Soft Matter 2017, 13, 101−110.
(19) McHale, G.; Orme, B. V.; Wells, G. G.; Ledesma-Aguilar, R.
Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS:
From Superhydrophobicity to Electrowetting. Langmuir 2019, 35,
4197−4204.
(20) Hardt, S.; McHale, G. Flow and Drop Transport Along Liquid-
Infused Surfaces. Annu. Rev. Fluid. Mech. 2022, 54, 83−104.
(21) Peppou-Chapman, S.; Neto, C. Depletion of the Lubricant from
Lubricant-Infused Surfaces Due to an Air/Water Interface. Langmuir
2021, 37, 3025−3037.
(22) Peppou-Chapman, S.; Vega-Sánchez, C.; Neto, C. Detection of
Nanobubbles on Lubricant-Infused Surfaces Using AFM Meniscus
Force Measurements. Langmuir 2022, 38, 10234−10243.
(23) Laibinis, P. E.; Whitesides, G. M. Omega.-Terminated
Alkanethiolate Monolayers on Surfaces of Copper, Silver, and Gold
Have Similar Wettabilities. J. Am. Chem. Soc. 1992, 114, 1990−1995.
(24) Adamson, A. W.; Gast, A. P. Physical Chemistry of Surfaces, 6th
ed.; Wiley-Blackwell, 1997.
(25) Becher-Nienhaus, B.; Liu, G.; Archer, R. J.; Hozumi, A.
Surprising Lack of Influence on Water Droplet Motion by Hydrophilic
Microdomains on Checkerboard-like Surfaces with Matched Contact
Angle Hysteresis. Langmuir 2020, 36, 7835−7843.
(26) Harkins, W. D.; Feldman, A. The Spreading of Liquids and the
Spreading Coefficient. J. Am. Chem. Soc. 1922, 44, 2665−2685.
(27) Marmur, A.; Bittoun, E. When Wenzel and Cassie Are Right:
Reconciling Local and Global Considerations. Langmuir 2009, 25,
1277−1281.
(28) McHale, G.; Brown, C. V.; Sampara, N. Voltage-Induced
Spreading and Superspreading of Liquids.Nat. Commun. 2013, 4, 1605.
(29) Israelachvili, J. N.; Gee, M. L. Contact Angles on Chemically
Heterogeneous Surfaces. Langmuir 1989, 5, 288−289.
(30) Quéré, D. Leidenfrost Dynamics. Annu. Rev. Fluid. Mech. 2013,
45, 197−215.
(31) Nosonovsky, M.; Bhushan, B. Superhydrophobic Surfaces and
Emerging Applications: Non-Adhesion, Energy, Green Engineering.
Curr. Opin. Colloid Interface Sci. 2009, 14, 270−280.
(32) Shirtcliffe, N. J.; McHale, G.; Atherton, S.; Newton, M. I. An
Introduction to Superhydrophobicity. Adv. Colloid Interface Sci. 2010,
161, 124−138.
(33) Dai, X.; Stogin, B. B.; Yang, S.; Wong, T.-S. Slippery Wenzel
State. ACS Nano 2015, 9, 9260−9267.

Langmuir pubs.acs.org/Langmuir Article

https://doi.org/10.1021/acs.langmuir.3c01313
Langmuir XXXX, XXX, XXX−XXX

H

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Glen+McHale"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8519-7986
mailto:glen.mchale@ed.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rodrigo+Ledesma-Aguilar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8714-0556
https://orcid.org/0000-0001-8714-0556
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chiara+Neto"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6058-0885
https://pubs.acs.org/doi/10.1021/acs.langmuir.3c01313?ref=pdf
https://doi.org/10.1039/df9480300011
https://doi.org/10.1039/tf9444000546
https://doi.org/10.1021/ie50320a024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la950418o?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la950418o?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1006/anbo.1997.0400
https://doi.org/10.1006/anbo.1997.0400
https://doi.org/10.1007/s004250050096
https://doi.org/10.1007/s004250050096
https://doi.org/10.1021/la062634a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la7011167?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.8b02062?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.8b02062?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev.matsci.38.060407.132434
https://doi.org/10.1016/j.jcis.2009.07.027
https://doi.org/10.1016/j.jcis.2009.07.027
https://doi.org/10.1038/nature10447
https://doi.org/10.1038/nature10447
https://doi.org/10.1209/0295-5075/96/56001
https://doi.org/10.1039/c2sm27032c
https://doi.org/10.1039/c2sm27032c
https://doi.org/10.1039/d0cs00036a
https://doi.org/10.1039/d0cs00036a
https://doi.org/10.1039/d0cs00036a
https://doi.org/10.1039/c6sm00920d
https://doi.org/10.1039/c6sm00920d
https://doi.org/10.1039/c6sm00920d
https://doi.org/10.1021/acs.langmuir.8b04136?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.8b04136?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev-fluid-030121-113156
https://doi.org/10.1146/annurev-fluid-030121-113156
https://doi.org/10.1021/acs.langmuir.0c02858?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.0c02858?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.2c01411?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.2c01411?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.2c01411?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00032a009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00032a009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00032a009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.0c00808?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.0c00808?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.0c00808?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja01433a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja01433a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la802667b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la802667b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/ncomms2619
https://doi.org/10.1038/ncomms2619
https://doi.org/10.1021/la00085a059?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/la00085a059?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev-fluid-011212-140709
https://doi.org/10.1016/j.cocis.2009.05.004
https://doi.org/10.1016/j.cocis.2009.05.004
https://doi.org/10.1016/j.cis.2009.11.001
https://doi.org/10.1016/j.cis.2009.11.001
https://doi.org/10.1021/acsnano.5b04151?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.5b04151?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/Langmuir?ref=pdf
https://doi.org/10.1021/acs.langmuir.3c01313?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

