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We introduce super-exponential inflation (ω < −1) from a 5D Riemann-flat canonical metric on which
we make a dynamical foliation. The resulting metric describes a super accelerated expansion for the early 
universe well known as super-exponential inflation that, for very large times, tends to an asymptotic de 
Sitter (vacuum dominated) expansion. The scalar field fluctuations are analyzed. The important result 
here obtained is that the spectral index for energy density fluctuations is not scale invariant, and for 
cosmological scales becomes ns(k < k∗) � 1. However, for astrophysical scales this spectrum changes to
negative values ns(k > k∗) < 0. 

© 2011 Elsevier B.V. Open access under CC BY license.

1. Introduction

Observations of the anisotropy in the cosmic microwave background radiation, are difficult to reconcile with a flat spectrum. For a 
universe dominated by stable dark matter a flat spectrum is ruled out altogether and even for a neutrino-dominated universe a spectrum 
of the type δρ/ρ = (M/M0)

−s , with s > 0, is preferable to the flat spectrum (for which s = 0). Unfortunately, however, a quasi-exponential
inflation with Ḣ < 0 leads to a spectrum with s < 0. This can be easily understood intuitively larger mass scales correspond to perturba-
tions which crossed the horizon 1/H earlier during the quasi-exponential phase of expansion, when H was larger, which implies a larger 
δρ/ρ .

It is possible to construct models in which Ḣ > 0 by starting with a theory in more than four dimensions [1]. In a higher-dimensional 
theory of gravity containing higher-derivative terms and a cosmological constant, a period of super-exponential inflation of the physical 
space–time is possible, during which the Hubble parameter H increases with time, as discovered by Shafi and Wetterich [2].

In this Letter we explore this possibility from extra dimensions using the space–time–matter theory of gravity [3,4], but using a dynam-
ical foliation ψ ≡ ψ(t) of the noncompact extra dimension ψ . This topic was explored previously by Ponce de León [5]. He showed that
the FRW line element can be ‘reinvented’ on a dynamical four-dimensional hypersurface, which is not orthogonal to the extra dimension, 
without any internal contradiction. This hypersurface is selected by the requirement of continuity of the metric and depends explicitly on 
the evolution of the extra dimension. More recently, was demonstrated that phantom [6] and warm inflationary [7] cosmological scenarios 
can be obtained through this mechanism from a 5D Riemann-flat. In this Letter shall find that this mechanism can be the responsible for 
existence of a super-exponential expansion of the early universe.

2. Dynamical foliation

In this section we are interested to study the relativistic dynamics of observers who moves on an 5D Ricci-flat space–time, such that 
the extra coordinate can be parameterized as a function of an effective 4D space–time.

We consider a 5D canonical metric

dS2 = gμν

(
yσ ,ψ

)
dyμ dyν − dψ2. (1)

Here the 5D coordinates are orthogonal: y ≡ {ya}.1 The geodesic equations for an relativistic observer are
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dU a

dS
+ Γ a

bcU bU c = 0, (2)

where U a = dya

dS are the velocities and Γ a
bc are the connections of (1). Now we consider a parametrization ψ(xα), where x ≡ {xα} are an

orthogonal system of coordinates, such that the effective line element (1), now can be written as

dS2 = hαβ dxα dxβ . (3)

It is very important to notice that S will be an invariant, so that derivatives with respect to S will be the same on 5D or 4D. In other
words, in this Letter we shall consider that space–time lengths that remain unaltered when we move on an effective 4D space–time. The

effective 4D tensor metric is hαβ = ∂ ya

∂xα
∂ yb

∂xβ gab = ea
αeb

β gab . Furthermore, since both coordinate systems, {xα} and {ya} are orthogonal and

S is an invariant, hence we can define the inverse transformation gab = ∂xα

∂ ya
∂xβ

∂ yb hαβ = ēα
a ēβ

b hαβ , such that ea
α ēβ

a = δ
β
α . In other words the

condition of normalization for the velocities of the observers is fulfilled in both the systems:

gabU aU b
∣∣
ψ(xα)

= hαβuαuβ = 1, (4)

where we have used that U a ≡ (dya/dS) = ea
αuα ≡ ea

α(dxα/dS). If we replace this expression in (2), we obtain

d(ea
αuα)

dS
+ Γ a

bc
(
eb

αec
β

)
uαuβ = 0, (5)

and hence

ēφ
a

d

dS

(
ea

αuα
) + Γ a

bc
(
eb

αec
β ēφ

a
)
uαuβ = 0. (6)

Now we can use the following expression for the connection transformation

Γ̄
φ
αβ = Γ a

bc
(
eb

αec
β ēφ

a
) + ēφ

a
∂

∂xα

(
ea

β

)
, (7)

and we obtain the geodesic equations for observers on the effective 4D space–time

duφ

dS
+ Γ̄

φ
αβuαuβ = F φ, (8)

where the induced extra force on the effective 4D space–time is

F φ = ēφ
a

∂

∂xα

(
ea

β

)
uαuβ − uα ēφ

a
d

dS

(
ea

α

)
. (9)

The extra force (9) can lead to the same result earlier obtained in [8]. In general, a nonzero F φ should be responsible for the violation of
the equivalence principle on the 4D hypersurface.

2.1. Einstein equations for dynamical foliations from a 5D vacuum state

Now we consider the Einstein equations on the 5D canonical symmetrical metric

Gab = −8πGTab, (10)

where the Einstein tensor is given by Gab = Rab − 1
2 gab R , Rab being the Ricci tensor, such that the scalar of curvature is R = gab Rab .

Because we are considering a 5D Ricci-flat metric, the Einstein tensor and the Ricci scalar will be null. Using the transformation of the
previous section, we obtain that

Ḡαβ = R̄αβ − 1

2
hαβ R̄ = −8πGT̄αβ, (11)

where we have used respectively the transformations

R̄αβ = ea
αeb

β Rab, (12)

R̄ = hαβ R̄αβ, (13)

T̄αβ = ea
αeb

β Tab, (14)

for the effective 4D Ricci tensor, the scalar of curvature and the energy–momentum tensor.
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2.2. Energy–momentum tensor from a massless scalar field in a 5D vacuum

In order to make a complete description for the dynamics of the scalar field, we shall consider its energy–momentum tensor. In order
to describe a true 5D physical vacuum we shall consider that the field is massless and there is absence of interaction on the 5D Ricci-flat
manifold, so that

T a
b = ΠaΠb − ga

b L[ϕ,ϕ,c], (15)

where L[ϕ,ϕ,c] = 1
2 ϕaϕa is the Lagrangian density for a free and massless scalar field on (1) and the canonical momentum is Πa = ∂L

∂ϕ,a
.

Notice that we are not considering interactions on the 5D vacuum, because it is related to a physical vacuum in the sense that the Einstein
tensor is zero: Ga

b = 0. The effective 4D energy–momentum tensor will be

T̄αβ = ea
αeb

β Tab
∣∣
ψ(xα)

. (16)

In other words, using the fact that L is an invariant it is easy to demonstrate that

T̄ α
β = Π̄αΠ̄β − hα

β L, (17)

where L is an invariant of the theory

L = 1

2
ϕ,aϕ,a = 1

2

(
ea
αϕ̄,α

)(
ēβ

a ϕ̄,β

)
, (18)

such that the Euler–Lagrange equations

δL
δϕ

− ∇a
δL
δϕ,a

= 0, (19)

describes the dynamics of the field ϕ on the metric (1).

2.3. D’Alambertian of a scalar field for dynamical foliations

We are interested to study how is the effective 4D dynamics obtained from a dynamic foliation of a 5D Ricci-flat canonical metric. We
consider a classical massless scalar field ϕ(ya) on the metric (1). The equation of motion (19) for the Lagrangian density (18) is given by�ϕ = ∇aϕ,a = 0, where

�ϕ = gab(ϕ,a,b − Γ c
ab

[
ϕ(y)

]
,c

)
. (20)

We can make the transformation from y ≡ {ya} to x ≡ {xα}, with the parametrization ψ(xα), where x ≡ {xα}. To simplify the notation we
shall use the notation ϕ(x) ≡ ϕ̄ and ϕ(y) ≡ ϕ , such that

gabϕ,a,b
∣∣
ψ(xα)

= hαβϕ̄,α,β , (21)

gabΓ c
abϕ,c

∣∣
ψ(xα)

= hαβ

[
Γ̄

γ
αβ − ēγ

c
∂

∂xα

(
ec

β

)]
ϕ̄,γ , (22)

where in the last expression we have used the transformation law for the connections (7). Finally, using the expressions (21) and (22) in
(20), we obtain

�ϕ|ψ(xα) = �̄ϕ̄ + hαβ ēγ
c

∂

∂xα

(
ec

β

)
ϕ̄,γ , (23)

where �̄ϕ̄ = hαβ(ϕ̄,α,β − Γ̄
γ
αβϕ̄,γ ) is the effective 4D D’Alambertian on the orthogonal coordinates system x ≡ {xα} of the scalar field ϕ̄(xα)

and the Γ̄
γ
αβ are the Levi-Civita connections on the effective 4D metric.

We shall require that

hαβ ēγ
c

∂

∂xα

(
ec

β

)
ϕ,γ

∣∣
ψ(xα)

= d

dϕ̄
V (ϕ̄). (24)

Because we are considering that S and L remain invariants on the effective 4D space–time, only conservative potentials will be used in
(24). In particular, the equation of motion for a massive scalar field with imaginary mass (im), on the effective 4D space–time is

�̄ϕ̄ − m2ϕ̄ = 0, (25)

which describes the motion of the scalar field ϕ̄(xα) on the 4D hypersurface with orthogonal coordinates x ≡ {xα}. These superluminal
particles are known as tachyons [8].
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3. Super-exponential inflation from a 5D canonical metric

In order to investigate an example of the earlier formalism, we shall consider the Riemann-flat canonical metric [9]

dS2 = ψ2 dN2 − ψ2e2N dr2 − dψ2, (26)

with the transformation: {ya} → {xα}

xi = yiψ0, t = Nψ0, (27)

and the dynamic foliation: ψ ≡ ψ(t). The effective 4D space–time being described by the line element

dS2 =
[

ψ2(t)

ψ2
0

− ψ̇2
]

dt2 − ψ2(t)

ψ2
0

e2ψ−1
0 t dR2, (28)

where the dot denotes the derivative with respect to t and ψ0 is some constant. In order to consider t as a cosmic time, one must require
that

ψ2(t)

ψ2
0

− ψ̇2 = 1, (29)

so that the foliation is described by

ψ(t) = ψ0 cosh (t/ψ0) → ψ̇(t) = sinh (t/ψ0). (30)

Finally, the metric (28), for a foliation (30) is described by

dS2 = dt2 − cosh (t/ψ0)
2e2ψ−1

0 t dR2, (31)

which describes an 3D (flat) spatially isotropic universe in expansion with a scale factor a(t) = cosh (t/ψ0)eψ−1
0 t , a scale factor H(t) = ȧ

a

and a deceleration parameter q = − äa
ȧ2 given by (for H0 = 2/ψ0)

H(t) = H0

2

[
tanh

(
t H0

2

)
+ 1

]
, (32)

q(t) = − 2

tanh (
t H0

2 ) + 1
. (33)

Notice that Ḣ > 0. Furthermore the late time asymptotic derivative the Hubble parameter and the deceleration parameter, are

Ḣ(t)|t→∞ → H0, (34)

q(t)|t→∞ → −1, (35)

which means that the universe describe a super-exponential inflationary period with and asymptotic de Sitter (vacuum dominated) ex-
pansion.

On the other hand, the relevant components of the Einstein tensor, are

G0
0 = −3

4

H2
0[sinh (H0t/2) + cosh (H0t/2)]2

cosh2 (H0t/2)
= −8πGρ, (36)

Gx
x = − H2

0

4

[sinh (H0t/2) + cosh (H0t/2)][5 cosh (H0t/2) + sinh (H0t/2)]
cosh2 (H0t/2)

= 8πGp, (37)

such that Gx
x = G y

y = Gz
z , because the isotropy of the space. The equation of state for this model of super-exponential inflation is

p

ρ
= −1

3

[sinh2 (H0t/2) + 5 cosh2 (H0t/2) + 6 sinh (H0t/2) cosh (H0t/2)]
[sinh2 (H0t/2) + cosh2 (H0t/2) + 2 sinh (H0t/2) cosh (H0t/2)] . (38)

Notice that its asymptotic value

p

ρ

∣∣∣∣
t→∞

→ −1, (39)

corresponds to a de Sitter exponential inflationary stage, with cosmological constant

Λ0 = 3H2
0 = 12

ψ2
0

. (40)
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3.1. Evolution of ϕ̄

We consider Eq. (24). For a massive scalar field, this equation can be rewritten as

ψ̈
∂ϕ

∂ψ

∣∣∣∣
ψ(t)

= −m2ϕ̄(�x, t), (41)

so that, using the fact that ψ2
0 ψ̈ = ψ , we obtain the solution ϕ(ψ) = ϕ̄0(ψ/ψ0)

−A , where A = m2ψ2
0 > 0 is a dimensionless parameter.

The equation of motion for the modes ϕ̄k(t) in Eq. (25), is

¨̄ϕk + 3H(t) ˙̄ϕk +
[

k2

a2(t)
− m2

]
ϕ̄k(t) = 0. (42)

The general solution is

ϕ̄k(t) = A1
[
x(t) + 1

]−(1+
√

1−( 2k
H0

)2)
e

H0
2 (−3+

√
9+( 2m

H0
)2)t F

{[a1,b1], [c1],−x(t)
}

+ B1
[
x(t) + 1

]−(1+
√

1−( 2k
H0

)2)
e
− H0

2 (3+
√

9+( 2m
H0

)2)t F
{[a2,b2], [c2],−x(t)

}
, (43)

where F {[ai,bi], [ci],−x(t)} is the hypergeometric function with argument x(t) = e−H0t , i = 1,2, and parameters

a1 = −
√

1 −
(

2k

H0

)2

+ 1

2
− 1

2

√
9 +

(
2m

H0

)2

+
√(

m

H0

)2

− 4

(
2k

H0

)2

, (44)

a2 = −
√

1 −
(

2k

H0

)2

+ 1

2
+ 1

2

√
9 +

(
2m

H0

)2

+
√(

m

H0

)2

− 4

(
2k

H0

)2

, (45)

b1 = −
√

1 −
(

2k

H0

)2

+ 1

2
− 1

2

√
9 +

(
2m

H0

)2

−
√(

m

H0

)2

− 4

(
2k

H0

)2

, (46)

b2 = −
√

1 −
(

2k

H0

)2

+ 1

2
+ 1

2

√
9 +

(
2m

H0

)2

−
√(

m

H0

)2

− 4

(
2k

H0

)2

, (47)

c1 = 1 −
√

9 +
(

2m

H0

)2

, (48)

c2 = 1 +
√

9 +
(

2m

H0

)2

, (49)

which we shall consider to be real.

3.2. Fluctuations and spectrum

For large times the hypergeometric function is irrelevant: F {[ai,bi], [ci],−x(t)} � 1. Notice that the exponential time dependent
factor of the second term in (43) decreases faster than the first one. Hence, for very large time the second term of (43) can be ne-
glected. Furthermore, on cosmological scales the wavenumber k is very small: (k/H0 	 1), so that one can make the approximation

1 +
√

1 − ( 2k
H0

)2 � 2 − 1
2 ( 2k

H0
)2. On the other hand, we shall consider that the mass of the scalar field is very small: m/H0 	 1. Hence, if

we chose B1 = 0, we obtain that

ϕ̄k(t)ϕ̄
∗
k (t)

∣∣
t/ψ0
1 � A1 A∗

1e
−H0[2−( 2m2

9H2
0
+k2)]t

, (50)

and the squared ϕ-fluctuations are

〈
ϕ2〉 = −A1 A∗

1

64π2

H0

t3/2
e
− 2t

9H0
(9H2−m2)

{
4t1/2εk0e

4ε2k2
0

H0
t + √

π H0 Erf
[

2εk0
√

t√
H0

]}
, (51)

where ε � 10−3, Erf[x] = (2/
√

π)
∫ x

0 e−x′2
dx′ is the error function and k0(t) is the wavenumber that separates the horizon is

k0(t) = a(t)

[
9

4
H2(t) + 3

2
Ḣ + m2

]1/2

. (52)

The spectrum for the squared ϕ-fluctuations corresponds with a k-dependent spectral index ns(k)

ns(k) = 3 − 2

(
H0t∗

ln(k∗/H0)

)[
1 −

(
m2

18H2
+ k2

H2

)]
, (53)
0 0
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Fig. 1. Spectral index ns(k) as a function of k/H0.

such that t∗ is defined as the time when super-inflation ends:

k∗ = H0e−H0t∗ , (54)

and inflation begins. The spectral index ns(k), is

ns(k) = 5 − 2

(
m2

18H2
0

+ k2

H2
0

)
. (55)

In Fig. 1 we have plotted ns for 0.001 < k/H0 < 0.1. We have used the values H0 = 6 × 10−9Mp and m = 10−9 Mp , Mp = 1.2 × 1019 GeV
being the Planckian mass. Notice that for cosmological scales the spectral index is close to the unity, but for astrophysical scales its value
becomes negative. This is an important result that agrees with observational date and it is not possible to be recovered in an standard
inflationary model for a single scalar field.

4. Final comments

Starting from a 5D canonical metric on which we make a dynamical foliation, in this Letter we have studied a model for super-
exponential inflation. Along the super-accelerated expansion ω̇ > 0, so that for very large times the equation of state tends to an
asymptotic de Sitter (vacuum dominated) expansion with ω|t→∞ → 1. We have obtained the effective 4D dynamics of the scalar field,
which drives the expansion of the universe, from a dynamical foliation of a 5D Riemann-flat canonical metric, on which this field is
considered as a test massless field. However, the scalar field acquires dynamics and (imaginary) mass on the effective 4D FRW and can be
considered as a tachyon field on this 4D hypersurface which was obtained from a dynamical foliation of this space the 5D Riemann-flat
space–time.

The scalar field fluctuations on very large scales were analyzed. The important result here obtained is that the spectral index for energy
density fluctuations (δρ/ρ ∼ 〈ϕ2〉), are scale invariant for cosmological scales becomes ns(k < k∗) � 1, but for more shorten scales this
spectrum changes to take negative values ns(k > k∗) < 0, until take values close to −2, in agreement with observations.
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