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Lattice-Boltzmann simulations of the dynamics of
liquid barrels

Élfego Ruiz-Gutiérrez1 and Rodrigo Ledesma-Aguilar1

1Smart Materials & Surfaces Laboratory, Department of Mathematics, Physics and
Electrical Engineering, Ellison Place, Northumbria University, Newcastle upon Tyne,
NE1 8ST, UK

E-mail: elfego.r.gutierrez@northumbria.ac.uk

Abstract. We study the relaxation towards equilibrium of a liquid barrel—a partially
wetting droplet in a wedge geometry—using a diffuse-interface approach. We formulate
a hydrodynamic model of the motion of the barrel in the framework of the Navier-
Stokes and Cahn-Hilliard equations of motion. We present a lattice-Boltzmann method
to integrate the diffuse-interface equations, where we introduce an algorithm to model
the dynamic wetting of the liquid on smooth solid boundaries. We present simulation
results of the over-damped dynamics of the liquid barrel. We find that the relaxation
of the droplets is driven by capillary forces and damped by friction forces. We show
that the friction is determined by the contribution of the bulk flow, the corner flow
near the contact lines and the motion of the contact lines by comparing simulation
results for the relaxation time of the barrel. Our results are in broad agreement with
previous analytical predictions based on a sharp interface model.
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Lattice-Boltzmann simulations of the dynamics of liquid barrels 2
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Figure 1. Diagram of a droplet in a wedge geometry.

1. Introduction

Droplets in wedge geometries appear in many natural environments. For example, many
shorebird species have wedge-shaped beaks that allow them to feed on water-bound
organisms [1]; water striders have arrays of tapered bristles that help them brush-off
droplets from their legs [2]; and the material properties of wet granular media depend
on the adhesion and lubrication provided by capillary bridges wedged between solid
grains [3, 4, 5].

Understanding the motion of droplets in wedges is important to improve
technologies that use the geometry of the confinement for purposes of transport,
positioning or actuation of small volumes of liquid. Wetting droplets inside tapered
capillary tubes [6] or wedge-shaped channels [7] self-propel towards regions of stronger
confinement, while non-wetting droplets trapped in non-parallel channels migrate to
regions of weaker confinement [8, 7]. Such principles have been used to transport
capillary bridges spontaneously [9], using mechanical [10] or photo-induced [11]
actuation, and even to separate droplets formed by two immiscible liquids [12].

For the ideal situation of a droplet trapped between perfectly flat and smooth walls
that form a wedge, the shape of the droplet depends on two parameters: the contact
angle that the liquid makes with the solid, θe, and the opening angle of the wedge, β (see
figure 1) [13]. In this paper, we are interested in a specific interface configuration which
we call a liquid barrel [14]. Liquid barrels form when the wetting angle of the droplet
satisfies the relation θe > 90◦ + β [15]. They differ from edge spreads (θe ≤ 90◦ − β),
edge blobs (90◦− β < θe ≤ 90◦+ β), and free drops (θe = 180◦) in that they equilibrate
into a truncated-sphere shape away from apex of the wedge [15, 16, 17]. When displaced
from their equilibrium position, they relax back driven by capillary forces (mediated by
the geometry of the wedge) and damped by frictional forces [18].

Despite their ubiquity, the dynamics of liquid barrels has not been explored in detail.
Experimentally, Ruiz-Gutiérrez et al. studied the relaxation of water droplets in smooth
wedges formed by Slippery Liquid Infused Surfaces, where a contact line is absent [18].
The authors found an exponential relaxation towards equilibrium. By comparing their
measurements of the relaxation time to a sharp-interface model, they showed that the
dominant source of dissipation is the flow within the bulk of the barrel. Then, assuming
superposition of sources of dissipation, they expanded the sharp-interface model to
include the effect of the flow near the contact line and of the motion of the contact
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Lattice-Boltzmann simulations of the dynamics of liquid barrels 3

line itself [14]. These assumptions, however, have not been verified. Therefore, a more
detailed study of the motion of the liquid barrels, which includes the evolution of the
hydrodynamic fields and the contact line, is needed.

Diffuse-interface numerical simulations are good candidates to study the dynamics
of liquid barrels, as they have the capacity of modelling capillary phenomena, including
the dynamic wetting of smooth solid surfaces [19, 20, 21, 22, 23, 24, 25]. They do this by
coupling the Navier-Stokes equations [26] with a mesoscopic equation of motion, such
as the Cahn-Hilliard equation [27, 28]. The main advantage of this approach is that the
interface dynamics occurs naturally through convection and diffusion—the latter driven
by chemical potential gradients [29, 19, 30]. This contrasts with sharp-interface models,
where one needs to track the evolution of the interface [31] and to specify a boundary
condition for the contact line in an ad hoc manner [32].

In this paper we study the relaxation of a liquid barrel using numerical simulations
of a diffuse-interface model; we use a lattice-Boltzmann algorithm, which is a suitable
method of integrating the diffuse-interface equations [33, 34, 35, 36]. We begin, in §2,
by presenting the diffuse-interface model and formulate the relaxation dynamics of the
liquid barrel in this framework. Then, in §3, we specify the lattice-Boltzmann method.
We introduce a new algorithm to model a smooth wedge geometry, but which can be
applied to implement boundaries of arbitrary shape. In §4 we present our simulation
results. We validate our simulation method by comparing the equilibrium configuration
of the barrels to previous analytical results. We study the relaxation of the barrels
to their equilibrium position. We investigate the role that hydrodynamic fields plays
during the translational motion of the barrel. We analyse the dissipation of energy and
the relaxation time, comparing our simulation results with those of the sharp-interface
model proposed by [14]. Finally, in §5 we present the conclusions of this work.

2. Theoretical framework

2.1. Diffuse-interface model

We describe the system using a diffuse-interface model where the liquid barrel, referred
to as the inner phase, and the surrounding fluid, or outer phase, are identified using a
phase field φ(x). We define the phase field such that the inner phase corresponds to the
φ > 0 phase, while the outer phase corresponds to the φ < 0. The fluids are contained in
a 3D domain, Ω ⊆ R3, and are enclosed by a 2D surface boundary, ∂Ω, which represents
the solid wedge geometry.

We introduce the Helmholtz free energy,

F [φ(x)] ≡
∫

Ω

ψ(φ,∇φ) dV +

∫
∂Ω

hφ dS, (1)

as the relevant thermodynamic potential for constant volume and temperature
situations. The first term is a volume contribution, where the free-energy density, ψ, is
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Lattice-Boltzmann simulations of the dynamics of liquid barrels 4

expressed as [37, 38]

ψ(φ,∇φ) ≡ 3γ√
8ξ

[
φ4

4
− φ2

2
+
ξ2

2
|∇φ|2

]
. (2)

The first two terms in Eq. (2) allow the coexistence of the inner and outer phases, while
the last term gives rise to a diffuse interfacial region of typical thickness ξ and surface
tension γ. The second term in Eq. (1) is the surface contribution to the free energy. The
constant h controls the energy cost incurred when the fluids come into contact with a
solid boundary, and is related to the contact angle of the interface with the solid, θe, by

h =
3

2
γ sgn(π/2− θe) {cos(α/3) [1− cos(α/3)]}1/2 , (3)

where α = arccos sin2 θe [27, 20].
From Eq. (1), it is possible to calculate the chemical potential field,

µ(x) =
δF

δφ
=

3γ√
8ξ

[
φ3 − φ− ξ2∇2φ

]
, (4)

and the pressure tensor field [38],

P(x) = [φµ− ψ ] I +
3γξ√

8
∇φ∇φ, (5)

where I is the identity matrix.
From Eq. (5), it is possible to show that the jump of the normal stress across a

gently curved interface obeys the Young-Laplace condition (see, e.g., [28]),

∆p = 2γκ, (6)

where κ = −∇ · n̂i/2 is the mean curvature of the diffuse interface, and n̂i is the local
unit normal vector to it.

Out of equilibrium, a gradient in the chemical potential will cause a diffusive current
−M∇µ, where the constant M is called the mobility. In addition, the phase field will
be advected by the velocity field, u. Therefore, the local conservation of φ is given by
the Cahn-Hilliard equation [37]:

∂tφ+ u · ∇φ = M∇2µ. (7)

The local conservation of momentum is governed by the incompressible Navier-Stokes
equation [26], i.e.

ρ(∂tu+ u · ∇u) = −∇ ·P + η∇2u, (8)

where ρ and η are the local density and dynamic viscosity of the fluid [28].
Following Ref. [39], we define the local fluid density and kinematic viscosity in terms

of the phase field via the profiles

ρ(x) ≡ ρin − ρout

2
φ(x) +

ρin + ρout

2
, (9)

and
η

ρ
(x) ≡ 1

2

(
ηin

ρin

− ηout

ρout

)
φ(x) +

1

2

(
ηin

ρin

+
ηout

ρout

)
, (10)
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Lattice-Boltzmann simulations of the dynamics of liquid barrels 5

where ρin, ρout, ηin and ηout are the saturation mass densities and dynamic viscosities
of the inner and outer phases. Note that ρ and η are required to be positive definite
quantities regardless of the sign in φ.

The system of partial differential equations (7) and (8) is subject to the boundary
conditions at the solid walls:

n̂ · ∇φ |∂Ω = −
√

8h

3γξ
, (11)

n̂ · ∇µ |∂Ω = 0, (12)

u |∂Ω = 0, (13)

n̂ · ∇ ·P |∂Ω = 0, (14)

where n̂ is the unit normal vector to the solid surface. Eq. (11) determines the normal
component of ∇φ at the boundary according to the surface energy parameter, h, and
gives rise to the wetting behaviour of the fluid. Eq. (12) imposes a vanishing flux of φ in
the normal direction to the solid boundary. Eq. (13) combines the impenetrability and
no-slip conditions. Eq. (14) imposes the normal-stress balance at the solid boundary.

Within the diffuse-interface model, the motion of the contact line occurs by virtue
of diffusive currents caused by a local imbalance in the chemical potential field [21, 24].
This is because, while the velocity field vanishes at the solid-fluid interface by virtue
of Eq. (13), the diffusive term in Eq. (7) does not. This regularises the singularity
that stems from the no-slip boundary condition [23]. As shown in [20] by Briant et
al. (2004), the combination of both features leads to a region of characteristic size `m

where the contact line “slips” past the solid surface. The connection between the diffuse-
interface contact-line dynamics and the corresponding sharp-interface description can be
established by identifying `m with the cut-off length-scale below which the hydrodynamic
description breaks down (see, e.g., [24, 40]); this is the contact-line slip length within
the Cox-Voinov relation [41]∫ θ

θe

dϑ

f(ϑ, ηout/ηin)
=
ηinvcl

γ
log

`M

`m

, (15)

where

f(ϑ, λ) = 2 sinϑ[λ2(ϑ2−sin2 ϑ)+2λ{ϑ(π−ϑ)+sin2 ϑ}+{(π−ϑ)2−sin2 ϑ}]
λ(ϑ2−sin2 ϑ){(π−ϑ)+sinϑ cosϑ}+{(π−ϑ)2−sin2 ϑ}(ϑ−sinϑ cosϑ)

, (16)

and vcl is the projection of the velocity of the interface in the direction perpendicular to
the contact line and λ ≡ ηout/ηin is the viscosity ratio. The Cox-Voinov relation links
the hydrodynamic distortion of the fluid-fluid interface at a typical macroscopic length
scale `M, characterised by the apparent contact angle θ, to its velocity, vcl. Apart from
the hydrodynamic effect, the contact line will give rise to a local friction force, −ζ0vcl,
where ζ0 is a contact-line friction coefficient.

Several authors have studied the dependence of `m and ζ0 on the diffuse-interface
model parameters [29, 19, 22, 23]. Recently, Kusumaatmaja et al., [24] showed the
existence of two scaling regimes of `m with the fluid mobility and viscosity: a diffuse-
interface regime occurs if ξ � (Mη)1/2, and leads to `m ∼ ξ1/2(Mη)1/4; a sharp-interface

Page 5 of 22 AUTHOR SUBMITTED MANUSCRIPT - JPCM-115553.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Lattice-Boltzmann simulations of the dynamics of liquid barrels 6

regime occurs if ξ � (Mη)1/2, and leads to `m ∼ (Mη)1/2. In both regimes, however,
the slip length obeys

log
`m

ξ
∝ logM∗, (17)

where we define the dimensionless mobility as M∗ ≡ Mηin/ξ
2. Jacqmin studied the

motion of the contact line using a diffuse-interface model, and found that the speed of
the contact line increases with the strength of diffusion [19]. Therefore, we expect that
the friction coefficient obeys

ζ0 ∝M−1 ∝ ηin

M∗ . (18)

2.2. A simple model of the dynamics of a liquid barrel close to equilibrium

The equilibrium configuration of a liquid barrel corresponds to a spherical interfacial
shape truncated by the walls of the wedge [15]. For a given droplet volume, equilibrium
contact angle, and wedge angle, the radius and centre of the truncated sphere (relative
to the apex of the wedge) read

Re = V 1/3
[π

6
(cos 3θe − 9 cos θe)

]−1/3

, (19)

and

Xe = −Re cos θe/ sin β. (20)

The equilibrium surface energy of the liquid barrel reads [14]

E0 = 3γV 2/3
[π

6
(cos 3θe − 9 cos θe)

]1/3

. (21)

Therefore, Eq. (21) can be used as the zero-point energy of the system.
The truncated-sphere equilibrium states are stable [15, 17, 14], i.e., E0 ≤ F for

any deformation of the interface that keeps the volume constant. Consequently, a
deformed droplet will relax back to the equilibrium barrel configuration. In general,
this relaxation process will include the reshaping of the interface to a truncated sphere
and the translation of the droplet along the wedge. We are interested in the long-time
translational motion of the barrel where short-wavelength perturbations have already
been damped [43, 26]. In such a situation, the free energy and the energy dissipation
can be expressed as F = F (X) and Ė = Ė(X, Ẋ), where X and Ẋ are the position and
translational velocity of the barrel. As the droplet relaxes, the free energy is consumed
by dissipation [42], thus, during its motion we obtain,

dF

dt
= Ė , (22)

which leads to the equation of motion.
The free energy can be expanded in a Taylor series around equilibrium

F (X) = E0 +
1

2
k (X −Xe)

2 +O(X −Xe)
3, (23)
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Lattice-Boltzmann simulations of the dynamics of liquid barrels 7

where k ≡ d2F/dX2|X=Xe > 0 is the restitution constant. In equilibrium the linear
term vanishes, and thus, does not appear in Eq. (23). The dissipation function can be
expressed as

Ė = −ν Ẋ2 +O(Ẋ)3, (24)

where ν ≡ −1
2
∂2Ė/∂Ẋ2|Ẋ=0 > 0 is the translational friction coefficient. In the expansion,

we have dropped the constant and linear terms because dissipation of energy cannot
take place in equilibrium in a closed system (constant term), and because spontaneous
creation of energy cannot occur (linear term). In the overdamped regime, the kinetic
energy is assumed negligible, implying that the interfacial energy is dissipated by friction.
Therefore, we can construct the equation of motion of the barrel by equating (23) with
(24), and using the chain rule, dF/dt = Ẋ dF/dX. This yields

νẊ = −k (X −Xe), (25)

which has the solution

X(t) = Xe + (X0 −Xe) exp (−t/τ), (26)

where X0 ≡ X(t = 0), and

τ ≡ ν

k
(27)

is the relaxation time.
Ruiz-Gutiérrez et al. [14] formulated a sharp-interface analytical model of the

exponential relaxation of a liquid barrel in a wedge geometry where ηin � ηout, i.e.,
in the limit λ → 0. They assumed a quasi-spherical barrel shape out of equilibrium,
obtaining that the restitution constant can be expressed as

k ∝ γ sin2 β, (28)

with the constant of proportionality being a function of the contact angle.
To compute the translational friction coefficient ν they considered three main

sources of dissipation: the bulk flow within the barrel (νbulk), the corner flow near
the contact line (νcorner), and the motion of the contact line itself (νcl),

ν = νbulk + νcorner + νcl, (29)

We shall follow a similar approach and include some generalisations that consider the
effect of a viscous outer phase. The bulk coefficient is composed of the dissipation from
the inner and outer phases νbulk = νin + νout where we take,

νin ∝ ηinV
1/3, (30)

from Ref. [14]. Analogously, we expect that the friction coefficient of bulk from the
outer phase is

νout ∝ ηoutV
1/3 = ηin λV

1/3. (31)
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Lattice-Boltzmann simulations of the dynamics of liquid barrels 8

The corner flow dissipation coefficient is described by Eq. (15), for small deviations of
the contact angle,

νcorner ∝ ηinV
1/3f(θe, λ) log

V 1/3

ξM∗α , (32)

where we have used Eq. (17) to estimate `m and `M ∝ V 1/3. The dissipation coefficient
related to the contact line is given by

νcl ∝
ηinV

1/3

M∗ (33)

where we have used the scaling for ζ0 as in Eq. (18). We thus expect, by combining
Eq. (27) through Eq. (33), that the relaxation time of the liquid barrel immersed in a
viscous flow is generalised to the scaling form:

τ ∗ = b1 + b2 λ+ b3 f(θe, λ) log
V 1/3

ξM∗α +
b4

M∗ , (34)

where τ ∗ ≡ γτ sin2 β/ηinV
1/3 is the dimensionless relaxation time and bi = bi(θe),

i = 1, ..., 4, are functions of the contact angle yet to be determined.

3. Lattice-Boltzmann method

3.1. Governing equations

The lattice-Boltzmann method numerically integrates the discretised Boltzmann
equation [44]

fq(x+ cq, t+ 1) = fq(x, t)−
1

τf

[
fq − f e

q

]
(x, t), (35)

where fq(x, t) is a particle distribution function that represents the average number of
fluid particles with position x and velocity cq at time t. Space and time are discretised,
and the velocity space is restricted to a set {cq}Q−1

q=0 where Q is the number of directions
in which particles can move. We use the D3Q15 model [34], which consists of a 3D
lattice with 15 velocity vectors.

The time evolution of the distribution function in Eq. (35) consists of a collision
step where fq relaxes to an equilibrium value f e

q over a timescale determined by the
collision parameter τf (right-hand side of the equation), followed by a streaming step
where fq is propagated along the direction of cq over a unitary time increment (left-hand
side).

The Navier-Stokes equation, Eq. (8), is recovered by means of a Chapman-Enskog
expansion of Eq. (35) [33]. The local momentum density is related to the first moments
of the distribution function, i.e.,

ρu ≡
∑
q

fqcq. (36)

The equilibrium distribution function, f e
q , is constructed to convey the thermodynamic

behaviour of the fluid, and to ensure local mass and momentum conservation. This
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Lattice-Boltzmann simulations of the dynamics of liquid barrels 9

is done by requiring that the moments of f e
q obey

∑
q f

e
q = ρ,

∑
q f

e
qcq = ρu, and∑

q f
e
qcqcq = P + ρuu. A suitable choice for the equilibrium distribution is,

f e
q (ρ,u,P) ≡ δ0qρ+ wq

[
ρu

cs
·H(1)

q +
1

2c2
s

(P + ρuu) : H(2)
q

]
(37)

where δij is the Kronecker delta, wq are weighting factors determined by the geometry
of the lattice [34], cs = 1/

√
3 is the speed of sound, and H

(n)
q = H(n)(cq) is the

tensor Hermite polynomial of n-th degree [45]. Explicitly, H(0)
q = 1, H(1)

q = cq/cs,
and H(2)

q = cqcq/c
2
s − I. The Chapman-Enskog expansion provides a relation between

τf and the kinematic viscosity of the fluid,
η

ρ
= c2

s(τf − 1/2), (38)

which, in combination with Eq. (10), specifies τf .
To integrate the Cahn-Hilliard equation, Eq. (7), we introduce a second discretised

Boltzmann equation,

gq(x+ cq, t+ 1) = gq(x, t)−
1

τg

[
gq − ge

q

]
(x, t), (39)

where gq is a distribution function with a collision parameter τg = 1, whose zeroth
moment is related to the phase field,

φ ≡
∑
q

gq. (40)

The corresponding equilibrium distribution function, ge
q, is defined as

ge
q(φ,u, µ) ≡ δ0qφ+ wq

[
φu

cs
·H(1)

q +
1

2c2
s

(
MµI

τg − 1/2
+ φuu

)
: H(2)

q

]
(41)

thus satisfying
∑

q g
e
q = φ,

∑
q g

e
qcq = φu and

∑
q g

e
qcqcq = Mµ(τg − 1/2)−1I + φuu.

For a set of values of the distribution functions fq and gq, Eqs. (36) and (40)
determine the fluid velocity, and phase field. To model fluids of different densities, we
calculate the local mass density using Eq. (9). We then evaluate f e

q and ge
q using Eqs. (37)

and (41), and the collision terms in Eqs (35) and (39). To compute the pressure tensor
and the chemical potential in Eqs. (37) and (41) we use Eqs. (5) and (4). These require
computing the gradient and Laplacian of the phase field, which we approximate using
the finite-differences stencils

∇φ(x) =
1

c2
s

∑
q 6=0

wqcq φ(x+ cq), (42)

∇2φ(x) =
2

c2
s

∑
q 6=0

wq [φ(x+ cq)− φ(x)] , (43)

where the wq are used as weighting factors to optimise the accuracy of the
approximation [46]. The collision parameter τf is determined by combining Eqs. (10)
and (38). Once the collision terms are determined, we iterate Eqs. (35) and (39).

The lattice-Boltzmann method is known to break Galilean invariance in situations
where the fluid has density inhomogeneities [33, 47]. Following [48], we added a
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Lattice-Boltzmann simulations of the dynamics of liquid barrels 10

δq

Figure 2. Schematics of solid boundaries in the lattice-Boltzmann method. A near-
boundary lattice node (large square) has at least one lattice link that intersects the
solid boundary. Each of such cut links is defined by its direction, and by the fractional
distance to the wall, δq. At the intersection, the boundary is defined by a local normal
vector n̂q.

correction term in the pressure tensor when calculating the equilibrium distribution
function f e

q to reduce this effect.

3.2. Boundary conditions

Boundary conditions in the lattice-Boltzmann method arise in the streaming steps of
Eqs. (35) and (39), and in the spatial derivatives of the phase field needed to compute
the equilibrium distribution functions in Eqs. (37) and (41). In the following, we will
refer to these as kinetic boundary conditions and finite-differences boundary conditions.

We define a near-boundary node, of position vector xb ∈ Ω, as a node that has at
least one lattice vector that crosses the boundary of the simulation domain (see figure 2).
These lattice vectors define a set of cut links, Γc [49]. Each cut link is characterised by
its length, |δqcq|, where 0 < δq ≤ 1, and by a local normal vector to the boundary,
n̂q = n̂(xb + δqcq).

The kinetic boundary conditions consist of specifying the particle population fq̄
streaming into the simulation domain opposite to the cut link, where q̄ ∈ {q′ | cq′ =

−cq; q ∈ Γc}. For no-slip walls at rest, fq̄ is given by a bounce-back algorithm [50, 51, 49]
with linear interpolation,

fq̄(xb, t+1) =
δq

1 + δq
f ?q (xb, t)+

1− δq
1 + δq

f ?q (xb−cq, t)+
δq

1 + δq
f ?q̄ (xb, t), (44)

where f ?q = (1 − 1/τf )fq + (1/τf )f
e
q is called the post-collision distribution function.

The same algorithm is used to determine the kinetic boundary condition for gq̄. The
bounce-back algorithm satisfies the no-flux boundary conditions, Eqs. (12)-(14).

The finite-differences boundary conditions consist of calculating the derivatives of
the phase field at a boundary node in such a way that Eq. (11) is satisfied. Specifically,
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Lattice-Boltzmann simulations of the dynamics of liquid barrels 11

we write the Taylor expansion [52]

n̂q · ∇φ(xb) + δqn̂qcq :∇∇φ(xb) = −
√

8h

3γ`
, (45)

if q ∈ Γc, and

cq · ∇φ(xb) +
1

2
cqcq :∇∇φ(xb) = φ(xb + cq)− φ(xb) (46)

otherwise. In Eqs. (45) and (46) the gradient vector, ∇φ(xb), and the Hessian matrix,
∇∇φ(xb), are unknown. In 3D, the gradient vector and the Hessian matrix comprise 3
+ 6 independent components, forming a set of 9 unknowns. Eqs. (45) and (46), however,
give Q− 1 = 14 equations. Therefore, the system is over-specified.

To solve the system of equations we introduce a pseudo-inverse algorithm. First, we
express Eqs. (45) and (46) in the same units by multiplying every instance of Eq. (45)
by δq|cq|2/n̂ · cq. Then, we express the system of equations in the matrix form:

GΛ = Φ, (47)

where

Λ = (∂xφ, ∂yφ, ∂zφ, ∂
2
xφ, ∂

2
yφ, ∂

2
zφ, ∂x∂yφ, ∂y∂zφ, ∂z∂xφ)T (xb) (48)

is a 9× 1 vector containing the unknown entries of the gradient vector and the Hessian
matrix, Φ is a 14×1 vector of known field values and boundary conditions whose entries
read

Φq =

{
−
√

8hδq|cq|2/3γ`n̂ · cq, if q ∈ Γc
φ(xb + cq)− φ(xb), otherwise

(49)

and G is a 14× 9 matrix of coefficients that reflects the local structure of φ, including
the boundaries. The pseudo-inverse algorithm consists of estimating the solution,
Λ = G−1Φ, computing G as

G−1 ≡ (EG)−1 E. (50)

In Eq. (50), E is a 9 × 14 matrix which projects G into a 9 × 9 matrix. This can be
thought of as a weighting of the entries of G while preserving linear independence; in
the spirit of Eqs. (42) and (43), we define columns of the projection matrix as,

Eq ≡
wq
δqc2

s

(cxq
δq
,
cyq
δq
,
czq
δq
,
c2
xq

c2
s

,
c2
yq

c2
s

,
c2
zq

c2
s

,
cxqcyq
c2
s

,
cyqczq
c2
s

,
czqcxq
c2
s

)T
, (51)

where we have generalised δq = 1 for q 6∈ Γc. Although the expression of E is not unique,
we found that Eq. (51) produces the expected interface profile near the solid boundaries,
which we quantified using the equilibrium contact angle.

Because the matrix G stores the structure of the lattice and of the solid boundary
(which do not change over time), the pseudo-inverse algorithm, Eq. (50), is applied
numerically at the initialisation of a simulation, and is therefore not more expensive
than the usual application of a finite-differences stencil.
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Lattice-Boltzmann simulations of the dynamics of liquid barrels 12

Nx

Nz

z

x

y

Figure 3. Schematics of the simulation setup. Two planes forming a wedge with an
opening angle β are contained in a simulation domain of dimensions Nx × Ny × Nz.
The initial condition consists of a truncated spherical droplet of radius R0 centred at
a position X0.

Parameter Value* Parameter Value Parameter Value
Nx 256 γ 0.008 ρin 1.0
Ny 128 θe 100◦—120◦ ρout 0.4
Nz 32—76 ` 3.54 ηin 1/6—1

β 5◦—8◦ M 1.5× 10−4—5.0× 10−3 ηout 1/15

*Unless otherwise specified, values are reported in lattice-Boltzmann units.

Table 1. Lattice-Boltzmann simulation parameters.

3.3. Simulation setup

We set up a simulation domain contained in a box of dimensions Nx × Ny × Nz,
as shown in figure 3. We fix the walls of the wedge at (x − b) · n̂ = 0, where
n̂(β) = (− sin β, 0, cos β) is the normal vector of the upper (+β) and lower (−β) wall.
We introduce the offset b to avoid that the walls intersect within the simulation domain,
which we found gave rise to numerical errors. We use b · n̂ = 1.72 which allows at least
two nodes of separation between the boundaries. We use periodic boundary conditions
along the y direction, and impose two solid planes at x = 1/2 and x = Nx − 3/2.

As an initial condition the fluid is at rest. The interface has a spherical configuration
with radius R0 and centre X0 as shown in figure 3. This corresponds to setting the
following initial velocity and phase field profiles

u(x, t = 0) = 0, (52)

φ(x, t = 0) = tanh

[
R0 − |x−X0|√

2`

]
. (53)

We have used two initial values of the centre of sphere, X0 = (0.75Nx, 0, 0) and
X0 = (0.24Nx, 0, 0), which, for the range of tapering and contact angles considered,
correspond to the droplet initial positions, X0 > Xe and X0 < Xe. These initial
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Lattice-Boltzmann simulations of the dynamics of liquid barrels 13

conditions allow us to study the inwards or outwards motion of the barrel.
The instantaneous volume, V (t), and position of the liquid barrel, X(t), are

computed as follows. To calculate the volume of the droplet we use

V (t) =
∑
x∈Ω

φ(x, t) + 1

2
if φ > −1. (54)

To calculate X(t), we take a slice of the phase field at the bisector plane, x = (x, y, 0).
We then use a linear interpolation scheme to find the interface, defined as the level curve
φ = 0. We take X(t) as the x coordinate of the centre of the circle that best fits the
interface profile using a least mean squares algorithm.

The values of the simulation parameters are summarised in table 1. For these
parameter values, a simulation time of ∼ 5× 106 iterations was found to be a sufficient
timescale for the system to relax to equilibrium.

4. Results

4.1. Equilibrium

We first focus on the equilibrium configuration of the droplet. As expected from the
analytical model, the interface adopts the shape of a sphere truncated by the solid
planes of radius and position given by Eqs. (19) and (20) (figure 4a). The simulations
agree with the analytical prediction over the whole range of equilibrium and wedge
angles considered (see figures 4b and 4c); this agreement holds regardless of the initial
conditions (compare symbols to solid lines in the figure).

Beyond the configuration of the interface, the simulations provide details of the
equilibrium hydrodynamic fields. The velocity field vanishes everywhere, except for
small currents (∼ 10−5 in lattice-Boltzmann units; see figure 5a) which arise due to
spurious effects in the lattice-Boltzmann method [36]. Despite being augmented by the
lower density and viscosity of the outer phase, however, they have a negligible effect on
the liquid barrel.

The scalar pressure profile, p ≡ trP/3, along the bisector line, dips at two
points (see figure 5b). These correspond to the interfacial regions (compare to the
phase-field profile shown as a dashed line). As pointed out by [39], this is due to the
free-energy density contribution to the pressure and gives rise to the surface tension
effect. The pressure is higher in the bulk of inner phase than in the outer phase. This
is the combined effect of surface tension and the curvature of the interface, as expected
from the Young-Laplace relation, Eq. (6).

4.2. Relaxation towards equilibrium

We now focus on the translational motion of the droplet during equilibration. Figure 6(a)
shows a sequence of simulation snapshots at intervals of 8× 105 time steps for droplets
moving inwards and outwards to the same equilibrium position. In both cases, the
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Lattice-Boltzmann simulations of the dynamics of liquid barrels 14
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Figure 4. Equilibria of liquid barrels in wedges. (a) Interface configuration of a
barrel of equilibrium contact angle θe = 110◦ in a wedge of opening angle β = 6◦.
The interface adopts the shape of a truncated sphere. The expected analytical result
is shown as a wireframe. (b) Equilibrium position of the liquid barrel as a function of
θe at constant β = 6◦. (c) Equilibrium position as a function β at constant θe = 110◦.
The symbols indicate the two types of initial conditions used in the simulations:
X0 > Xe (◦) and X0 < Xe (�). The solid lines correspond to the analytical prediction.
The simulation parameters are M = 5× 10−3 and ηin = 1/3.

position of the droplet as a function of time follows an exponential relaxation (figure 6(b)
and inset).

To better understand the mechanism driving the relaxation process, we consider
the instantaneous pressure and chemical potential distributions within the droplet. The
slope of the pressure profile, ∂p/∂x, is negative for droplets that move outwards and
positive for droplets that move inwards (see figure 7). This indicates the action of a net
capillary driving force resulting from Laplace pressure differences.

We now turn our attention to the flow pattern during the equilibration process.
We observe two recirculating vortices at the sides of the droplet (see streamlines in
figure 8a). We found that these structures persist over the whole set of simulations,
regardless of the direction of motion or the velocity of translation. This is reasonable,
as the dynamics in the simulations always fall in the exponential regime. Therefore, we
expect that while the magnitude of these features decreases as the system approaches
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Figure 5. Equilibrium hydrodynamic fields of a liquid barrel of contact angle
θe = 110◦ in a wedge of opening angle β = 6◦. (a) Cross-sections of the phase
field (colour plot, top) and velocity field (vector plot) and barometric pressure (colour
plot, bottom). The magnitude of the arrows has been rescaled by a factor of 105 for
visibility. (b) Pressure (solid line) and phase field (dashed line) profiles along the centre
line (x-axis). The simulation parameters are M = 5× 10−3 and ηin = 1/3.

x
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Time  t  (106 lBu)

Figure 6. Motion of the liquid barrel and relaxation to the equilibrium
configuration. (a) Snapshots of the time evolution of the droplet. (b) Evolution in the
position of the droplet, the symbols (�) denote outwards motion, in contrast with (◦)
that represent inward motion. The dot-dashed line indicates the equilibrium position.
In the inset, a semilogarithmic plot of the the distance to equilibrium as a function
of time is presented. The simulations were carried out for the angles β = 6◦, and
θe = 120◦, the snapshots are taken every 8 × 105 timesteps for a total of 4.8 × 106

iterations. The mobility and viscosity were set to M = 0.005 and ηin = 1/3.
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Lattice-Boltzmann simulations of the dynamics of liquid barrels 16

P

Figure 7. Instantaneous out-of-equilibrium pressure profiles for a liquid barrel of
contact angle θe = 110◦ in a wedge of opening angle β = 5◦. The curves correspond
to the centre-line pressure profiles, p(x, 0, 0), and are shown for the bulk of the inner
phase, where φ(x) > 0.9. From left to right, the curves correspond to displacements
from equilibrium X(t)−Xe = {−1,−1/2, 0, 1/2, 1}V 1/3. The inset illustrations show
a colour map of the pressure field at the cross-sectional plane y = 0 (decreasing from
dark red to light blue). The simulation parameters are M = 0.005 and ηin = 1/3.

equilibrium, the overall structure of the flow remains the same [26].
The outer flow contrasts with the flow in the bulk of the barrel, which shows

a remarkably laminar structure (see figure 8a). From the simulation results, we can
identify two regions where the inner flow pattern is qualitatively distinct, corresponding
to the bulk flow and the flow near the contact line. The laminar flow occurs in the bulk
of the barrel, as shown in the cross-section shown in figure 8(b). The flow points in
the direction of the apex, growing in magnitude from the walls to the bisector plane.
This is reminiscent of the pressure-driven flow within a wedge, also known as a Jeffery-
Hamel flow [26]. The structure of the flow near the contact line, shown in the close-up
of figure 8(c), is consistent with the generic corner flow of wetting dynamics predicted
by Cox and Voinov [53, 40], which results in a tread-milling motion of the interface as
documented in experiments by [54]. Thus, the structure of the bulk and corner flows
in the simulations is in good qualitative agreement with the theoretical model of the
barrel dynamics introduced by [14].

4.3. Relaxation time

The exponential relaxation of the barrels implies that Ẋ = −(X − Xe)/τ , where τ
is the relaxation time. We found that this linear relation is satisfied for barrels over
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Figure 8. Instantaneous flow field of a liquid barrel of contact angle θe = 120◦ moving
inwards in a wedge of opening angle β = 6◦. (a) The streamlines of the velocity field
are coloured with the z component of the vorticity. (b) Side view of the velocity and
vorticity fields. The interface is plotted as a solid contour line, the vorticity field ωy is
plotted in colour map. The size of the arrows is augmented by 3.5× 104 for visibility.
(c) Close-up of the contact-line region indicated as a square in (b). The interface is
plotted as a thick semi-transparent line. Contour lines of the vorticity field are plotted
to enhance the visibility. The velocity field vectors are rescaled to 1.5 × 104. The
simulation parameters are set to M = 0.005 and ηin = 1/3.

the whole range of contact angles considered, and that, for constant values of all other
parameters (β, M and ηin), the data collapse onto a single line (see figure 9a). The
data collapse implies that the relaxation time does not change significantly with the
contact angle. While at lower contact angles we expect a stronger restitutive force from
Eq. (28), we also expect a higher hydrodynamic dissipation near the contact lines due
to the development of vortices in the inner (more viscous) phase. We can infer that the
variation of the dissipative and conservative forces with the contact angle is therefore
approximately equal, thus cancelling out a net dependence of τ on θe.
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Figure 9. Correlation between the instantaneous displacement and velocity of liquid
barrels. (a) Data collapse for liquid barrels of different contact angles and fixed wedge
angle. (b) Data collapse for different opening angles at fixed contact angle. The solid
lines correspond to linear trends close to equilibrium.

Figure 10. Dependence of the translational relaxation time of a liquid barrel on the
viscosity and coefficient of mobility. (a) τ as a function of ηin at fixed M = 0.005.
The solid line a linear fit. (b) τ as function of M at fixed ηin = 1/3. The continuous
lines correspond to three curve fittings of Eq. (34), corresponding contributions to
dissipation from the bulk and corner flow (dotted-dashed line), bulk and contact line
(dotted line), and bulk, corner and contact line (solid line). The simulation parameters
are θe = 110◦ and β = 5◦.

From Eq. (34), we expect τ ∝ 1/ sin2 β, and thus − sin2 βẊ ∝ (X − Xe), which
is confirmed by the simulation results (see figure 9b). Physically, this functional
dependence arises from the projection of surface tension and pressure forces along
coordinate of translational motion, which, as first noted by [17], balance out in
equilibrium. Because the restitution coefficient scales as 1/ sin2 β, we can conclude
that the friction coefficient—and therefore the dissipation itself—is independent of the
wedge geometry (at least for the small wedge angles considered here).

Page 18 of 22AUTHOR SUBMITTED MANUSCRIPT - JPCM-115553.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t
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We found that τ increases linearly with the viscosity of the inner phase, ηin (see
figure 10a). This is in agreement with Eq. (34), implying that all contributions to the
drag coefficient arising from the inner phase scale with ηin. The extrapolation of the
relaxation time to a finite value as ηin → 0 is due to the non-zero viscosity of the outer
phase.

With the intention of giving generality to our results, we now turn to the
dimensionless representation of the relaxation time, τ ∗. The dependence of τ ∗ on
the dimensionless mobility, M∗, is presented in figure 10b. We found a monotonic
decrease, which can be reasoned in terms of both a larger microscopic length-scale `m,
and a smaller contact-line friction coefficient, ζ0, at higher M . More quantitatively, we
compared the simulation results to the theory by varying simultaneously M∗ and λ to
fit the parameters bi, i = 1, ..., 4 and α to Eq. (34). The functional form is in good
agreement with the simulation data for the set of parameter values b1 = 4.1, b2 = 11.4,
b3 = −1.26, b4 = 3.46 × 10−7 and α = −0.07. In fact, we found that none of the
terms in Eq. (34) are negligible; a fit cancelling the bulk (fixing b1 = 0 and b2 = 0,
shown as a dash-dotted line in figure 10b), the corner flow (b3 = 0, dashed line) or the
contact line dissipation (b4 = 0, dotted line) gives a qualitatively poor representation
of the simulation data. Therefore, we can conclude that all sources of dissipation,
corresponding to the bulk, corner flow and contact line, contribute to determining the
global friction coefficient of the barrel, and thus to the relaxation timescale.

5. Conclusions

We have studied the translational relaxation of liquid barrels in wedges towards
equilibrium using a diffuse-interface model.

Within our lattice-Boltzmann simulation method, we have introduced a smoothing
algorithm to model the interaction of a liquid barrel in contact with a solid wedge
geometry. This algorithm can be used to model the wetting behaviour of two fluid
phases in contact with solid boundaries of an arbitrary shape.

We have introduced an alternative method to compute the energy landscape of a
capillary system by integrating the dissipation function in time. This is advantageous
because it avoids a direct computation of the surface area of the interfaces as is done
in sharp-interface approximations, or the free energy at the solid walls in the diffuse-
interface model.

We have validated our simulation method by analysing the equilibrium state of
the liquid barrels. We find a quantitative agreement with previous theoretical [15] and
experimental results [17]; the shape of the barrel in equilibrium is a truncated sphere,
whose position and radius obey the expected dependence on the wetting angle and the
opening angle of the wedge.

We have analysed the relaxation of the liquid barrels towards equilibrium. The
motion of the liquid is driven by a distribution of the curvature of the interface which
creates a pressure gradient. The resulting flow field in the bulk of the droplet is laminar.
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Near the contact lines, the flow field changes to the treadmill pattern described by [54].
The motion of the contact lines is due to differences in the chemical potential caused by
the out-of-equilibrium interface curvature [21].

We have compared our simulations to the model of Ruiz-Gutiérrez et al. [14], who
derived an expression of the relaxation time of the liquid barrel including the effect of
the hydrodynamic dissipation of the bulk flow and the corner flow near the contact line,
and the dissipation arising from the motion of the contact line itself. We have identified
the scaling of the relaxation time in terms of the diffuse-interface model parameters.
Our results confirm the presence of the three contributions to the relaxation time.
The relative contribution of the contact-line and corner-flow dissipation (to the bulk
dissipation) is governed by the size of the interface. In our simulations this length
scale is two orders of magnitude smaller than the size of the droplet, which contrasts
with millimetre-sized droplets of molecular liquids (such as water) where the interface
thickness is several orders of magnitude smaller than the typical macroscopic length
scale of the flow. Qualitatively, however, the scaling relation for the relaxation time is
expected to hold.

We hope that our results will help guide experiments to identify the contribution
of the different sources of dissipation in this system. We acknowledge that, in practice,
two important phenomena are likely to occur: contact angle hysteresis and gravity. On
the one hand, hysteresis emerges from either physical or chemical inhomogeneities that
produce weak pinning points on the solid surface. We expect that these have the effect of
truncating the relaxation to equilibrium in a stochastic relaxation. On the other hand,
strong body forces, such as gravity, that distort the shape of larger droplets would require
investigation beyond the liquid barrel approximation. In both cases, these phenomena
deserve their own treatment and we hope to have inspired further investigation on these
lines.
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