2,444 research outputs found

    Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods

    Get PDF
    Recent works showed that pressure-robust modifications of mixed finite element methods for the Stokes equations outperform their standard versions in many cases. This is achieved by divergence-free reconstruction operators and results in pressure independent velocity error estimates which are robust with respect to small viscosities. In this paper we develop a posteriori error control which reflects this robustness. The main difficulty lies in the volume contribution of the standard residual-based approach that includes the L2L^2-norm of the right-hand side. However, the velocity is only steered by the divergence-free part of this source term. An efficient error estimator must approximate this divergence-free part in a proper manner, otherwise it can be dominated by the pressure error. To overcome this difficulty a novel approach is suggested that uses arguments from the stream function and vorticity formulation of the Navier--Stokes equations. The novel error estimators only take the curl\mathrm{curl} of the right-hand side into account and so lead to provably reliable, efficient and pressure-independent upper bounds in case of a pressure-robust method in particular in pressure-dominant situations. This is also confirmed by some numerical examples with the novel pressure-robust modifications of the Taylor--Hood and mini finite element methods

    Magneto-Roton Modes of the Ultra Quantum Crystal: Numerical Study

    Full text link
    The Field Induced Spin Density Wave phases observed in quasi-one-dimensional conductors of the Bechgaard salts family under magnetic field exhibit both Spin Density Wave order and a Quantized Hall Effect, which may exhibit sign reversals. The original nature of the condensed phases is evidenced by the collective mode spectrum. Besides the Goldstone modes, a quasi periodic structure of Magneto-Roton modes, predicted to exist for a monotonic sequence of Hall Quantum numbers, is confirmed, and a second mode is shown to exist within the single particle gap. We present numerical estimates of the Magneto-Roton mode energies in a generic case of the monotonic sequence. The mass anisotropy of the collective mode is calculated. We show how differently the MR spectrum evolves with magnetic field at low and high fields. The collective mode spectrum should have specific features, in the sign reversed "Ribault Phase", as compared to modes of the majority sign phases. We investigate numerically the collective mode in the Ribault Phase.Comment: this paper incorporates material contained in a previous cond-mat preprint cond-mat/9709210, but cannot be described as a replaced version, because it contains a significant amount of new material dealing with the instability line and with the topic of Ribault Phases. It contains 13 figures (.ps files

    Electronic instabilities of a Hubbard model approached as a large array of coupled chains: competition between d-wave superconductivity and pseudogap phase

    Get PDF
    We study the electronic instabilities in a 2D Hubbard model where one of the dimensions has a finite width, so that it can be considered as a large array of coupled chains. The finite transverse size of the system gives rise to a discrete string of Fermi points, with respective electron fields that, due to their mutual interaction, acquire anomalous scaling dimensions depending on the point of the string. Using bosonization methods, we show that the anomalous scaling dimensions vanish when the number of coupled chains goes to infinity, implying the Fermi liquid behavior of a 2D system in that limit. However, when the Fermi level is at the Van Hove singularity arising from the saddle points of the 2D dispersion, backscattering and Cooper-pair scattering lead to the breakdown of the metallic behavior at low energies. These interactions are taken into account through their renormalization group scaling, studying in turn their influence on the nonperturbative bosonization of the model. We show that, at a certain low-energy scale, the anomalous electron dimension diverges at the Fermi points closer to the saddle points of the 2D dispersion. The d-wave superconducting correlations become also large at low energies, but their growth is cut off as the suppression of fermion excitations takes place first, extending progressively along the Fermi points towards the diagonals of the 2D Brillouin zone. We stress that this effect arises from the vanishing of the charge stiffness at the Fermi points, characterizing a critical behavior that is well captured within our nonperturbative approach.Comment: 13 pages, 7 figure

    Development of a dynamic pressure calibration technique

    Get PDF
    The report deals with work continuing on the development of a method of producing sinusoidally varying pressures of at least 34 kPa zero-to-peak with amplitude variations within plus or minus 5% up to 2 kHz for the dynamic calibration of pressure transducers. Sinusoidally varying pressures of 34 kPa zero-to-peak were produced between 40 Hz and 750 Hz by vibrating a 10-cm column of a dimethyl siloxane liquid at 36gn zero-to-peak. Damping of the liquid column was accomplished by packing the fixture tube with a number of smaller diameter tubes

    Development of dynamic calibration methods for POGO pressure transducers

    Get PDF
    Two dynamic pressure sources are described for the calibration of pogo pressure transducers used to measure oscillatory pressures generated in the propulsion system of the space shuttle. Rotation of a mercury-filled tube in a vertical plane at frequencies below 5 Hz generates sinusoidal pressures up to 48 kPa, peak-to-peak; vibrating the same mercury-filled tube sinusoidally in the vertical plane extends the frequency response from 5 Hz to 100 Hz at pressures up to 140 kPa, peak-to-peak. The sinusoidal pressure fluctuations can be generated by both methods in the presence of high pressures (bias) up to 55 MPa. Calibration procedures are given in detail for the use of both sources. The dynamic performance of selected transducers was evaluated using these procedures; the results of these calibrations are presented. Calibrations made with the two sources near 5 Hz agree to within 3% of each other

    A dynamic pressure source for the calibration of pressure transducers

    Get PDF
    A dynamic pressure source is described for producing sinusoidally varying pressures of up to 34 kPa zero to peak, over the frequency range of approximately 50 Hz to 2 kHz. The source is intended for the dynamic calibration of pressure transducers. The transducer to be calibrated is mounted near the base of the thick walled aluminum tube forming the vessel so that the pressure sensitive element is in contact with the liquid in the tube. A section of the tube is filled with small steel balls to damp the motion of the 10-St dimethyl siloxane working fluid in order to extend the useful frquency range to higher frequencies than would be provided by an undamped system. The dynamic response of six transducers provided by the sponsor was evaluated using the pressure sources; the results of these calibrations are given

    Decomposing the scattered field of two-dimensional metaatoms into multipole contributions

    Full text link
    We introduce a technique to decompose the scattered near field of two-dimensional arbitrary metaatoms into its multipole contributions. To this end we expand the scattered field upon plane wave illumination into cylindrical harmonics as known from Mie theory. By relating these cylin- drical harmonics to the field radiated by Cartesian multipoles, the contribution of the lowest order electric and magnetic multipoles can be identified. Revealing these multipoles is essential for the design of metamaterials because they largely determine the character of light propagation. In par- ticular, having this information at hand it is straightforward to distinguish between effects that result either from the arrangement of the metaatoms or from their particular design

    On the self-similarity in quantum Hall systems

    Full text link
    The Hall-resistance curve of a two-dimensional electron system in the presence of a strong perpendicular magnetic field is an example of self-similarity. It reveals plateaus at low temperatures and has a fractal structure. We show that this fractal structure emerges naturally in the Hamiltonian formulation of composite fermions. After a set of transformations on the electronic model, we show that the model, which describes interacting composite fermions in a partially filled energy level, is self-similar. This mathematical property allows for the construction of a basis of higher generations of composite fermions. The collective-excitation dispersion of the recently observed 4/11 fractional-quantum-Hall state is discussed within the present formalism.Comment: 7 pages, 4 figures; version accepted for publication in Europhys. Lett., new version contains energy calculations for collective excitations of the 4/11 stat

    Self-energy corrections to anisotropic Fermi surfaces

    Full text link
    The electron-electron interactions affect the low-energy excitations of an electronic system and induce deformations of the Fermi surface. These effects are especially important in anisotropic materials with strong correlations, such as copper oxides superconductors or ruthenates. Here we analyze the deformations produced by electronic correlations in the Fermi surface of anisotropic two-dimensional systems, treating the regular and singular regions of the Fermi surface on the same footing. Simple analytical expressions are obtained for the corrections, based on local features of the Fermi surface. It is shown that, even for weak local interactions, the behavior of the self-energy is non trivial, showing a momentum dependence and a self-consistent interplay with the Fermi surface topology. Results are compared to experimental observations and to other theoretical results.Comment: 13 pages, 10 figure
    • …
    corecore