9 research outputs found

    Metabolic challenges and key players in serpentinite-hosted microbial ecosystems

    Get PDF
    Serpentinite-hosted systems are amongst the most challenging environments for life on Earth. Serpentinization, a geochemical alteration of exposed ultramafic rock, produces hydrothermal fluids enriched in abiotically derived hydrogen (H2), methane (CH4), and small organic molecules. The hyperalkaline pH of these fluids poses a great challenge for metabolic energy and nutrient acquisition, curbing the cellular membrane potential and limiting electron acceptor, carbon, and phosphorous availability. Nevertheless, serpentinization supports the growth of diverse microbial communities whose metabolic make-up might shed light on the beginning of life on Earth and potentially elsewhere. Here, we outline current hypotheses on metabolic energy production, carbon fixation, and nutrient acquisition in serpentinizing environments. A taxonomic survey is performed for each important metabolic function, highlighting potential key players such as H2 and CH4 cycling Serpentinimonas, Hydrogenophaga, Methanobacteriales, Methanosarcinales, and novel candidate phyla. Methodological biases of the available data and future approaches are discussed

    Comparative Metagenomics Highlight a Widespread Pathway Involved in Catabolism of Phosphonates in Marine and Terrestrial Serpentinizing Ecosystems

    No full text
    This first comparative metagenomic study of serpentinite-hosted environments provides an objective framework to understand the functioning of these peculiar ecosystems. We showed a taxonomic similarity between the PBHF and other terrestrial serpentinite-hosted ecosystems

    Comparative Metagenomics Highlight a Widespread Pathway Involved in Catabolism of Phosphonates in Marine and Terrestrial Serpentinizing Ecosystems

    No full text
    This first comparative metagenomic study of serpentinite-hosted environments provides an objective framework to understand the functioning of these peculiar ecosystems. We showed a taxonomic similarity between the PBHF and other terrestrial serpentinite-hosted ecosystems

    Microbial ecology of the newly discovered serpentinite-hosted Old City hydrothermal field (southwest Indian ridge)

    No full text
    International audienceAbstract Lost City (mid-Atlantic ridge) is a unique oceanic hydrothermal field where carbonate-brucite chimneys are colonized by a single phylotype of archaeal Methanosarcinales, as well as sulfur- and methane-metabolizing bacteria. So far, only one submarine analog of Lost City has been characterized, the Prony Bay hydrothermal field (New Caledonia), which nonetheless shows more microbiological similarities with ecosystems associated with continental ophiolites. This study presents the microbial ecology of the ‘Lost City’-type Old City hydrothermal field, recently discovered along the southwest Indian ridge. Five carbonate-brucite chimneys were sampled and subjected to mineralogical and geochemical analyses, microimaging, as well as 16S rRNA-encoding gene and metagenomic sequencing. Dominant taxa and metabolisms vary between chimneys, in conjunction with the predicted redox state, while potential formate- and CO-metabolizing microorganisms as well as sulfur-metabolizing bacteria are always abundant. We hypothesize that the variable environmental conditions resulting from the slow and diffuse hydrothermal fluid discharge that currently characterizes Old City could lead to different microbial populations between chimneys that utilize CO and formate differently as carbon or electron sources. Old City discovery and this first description of its microbial ecology opens up attractive perspectives for understanding environmental factors shaping communities and metabolisms in oceanic serpentinite-hosted ecosystems

    Alkaliphilus serpentinus sp. nov. and Alkaliphilus pronyensis sp. nov., two novel anaerobic alkaliphilic species isolated from the serpentinite-hosted Prony Bay Hydrothermal Field (New Caledonia)

    No full text
    International audienceTwo novel anaerobic alkaliphilic strains, designated as LacT T and LacV T , were isolated from the Prony Bay Hydrothermal Field (PBHF, New Caledonia). Cells were motile, Gram-positive, terminal endosporeforming rods, displaying a straight to curved morphology during the exponential phase. Strains LacT T and LacV T were mesophilic (optimum 30°C), moderately alkaliphilic (optimum pH 8.2 and 8.7, respectively) and halotolerant (optimum 2% and 2.5% NaCl, respectively). Both strains were able to ferment yeast extract, peptone and casamino acids, but only strain LacT T could use sugars (glucose, maltose and sucrose). Both strains disproportionated crotonate into acetate and butyrate. Phylogenetic analysis revealed that strains LacT T and LacV T shared 96.4% 16S rRNA gene sequence identity and were most closely related to A. peptidifermentans Z-7036, A. namsaraevii X-07-2 and A. hydrothermalis FatMR1 (95.7%-96.3%). Their genome size was of 3.29 Mb for strain LacT T and 3.06 Mb for strain LacV T with a G + C content of 36.0 and 33.9 mol%, respectively. The ANI value between both strains was 73.2 %. Finally, strains LacT T (=DSM 100337 = JCM 30643) and LacV T (=DSM 100017 = JCM 30644) are proposed as two novel species of the genus Alkaliphilus, order Clostridiales, phylum Firmicutes, Alkaliphilus serpentinus sp. nov. and Alkaliphilus pronyensis sp. nov., respectively. The genomes of the three Alkaliphilus species isolated from PBHF were consistently detected in the PBHF chimney metagenomes, although at very low abundance, but not significantly in the metagenomes of other serpentinizing systems (marine or terrestrial) worldwide, suggesting they represent indigenous members of the PBHF microbial ecosystem

    Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire

    No full text
    While past research has studied forest succession on decadal timescales, ecosystem responses to rapid shifts in nutrient dynamics within the first months to years of succession after fire (e.g., carbon (C) burn-off, a pulse in inorganic nitrogen (N), accumulation of organic matter, etc.) have been less well documented. This work reveals how rapid shifts in nutrient availability associated with fire disturbance may drive changes in soil enzyme activity on short timescales in forest secondary succession. In this study, we evaluate soil chemistry and decomposition extracellular enzyme activity (EEA) across time to determine whether rapid shifts in nutrient availability (1–29 months after fire) might control microbial enzyme activity. We found that, with advancing succession, soil nutrients correlate with C-targeting ÎČ-1,4-glucosidase (BG) EEA four months after the fire, and with N-targeting ÎČ-1,4-N-acetylglucosaminidase (NAG) EEA at 29 months after the fire, indicating shifting nutrient limitation and decomposition dynamics. We also observed increases in BG:NAG ratios over 29 months in these recently burned soils, suggesting relative increases in microbial activity around C-cycling and C-acquisition. These successional dynamics were unique from seasonal changes we observed in unburned, forested reference soils. Our work demonstrates how EEA may shift even within the first months to years of ecosystem succession alongside common patterns of post-fire nutrient availability. Thus, this work emphasizes that nutrient dynamics in the earliest stages of forest secondary succession are important for understanding rates of C and N cycling and ecosystem development

    High reactivity of deep biota under anthropogenic CO2 injection into basalt

    Get PDF
    Basalts are recognized as one of the major habitats on Earth, harboring diverse and active microbial populations. Inconsistently, this living component is rarely considered in engineering operations carried out in these environments. This includes carbon capture and storage (CCS) technologies that seek to offset anthropogenic CO2 emissions into the atmosphere by burying this greenhouse gas in the subsurface. Here, we show that deep ecosystems respond quickly to field operations associated with CO2 injections based on a microbiological survey of a basaltic CCS site. Acidic CO2-charged groundwater results in a marked decrease (by ~ 2.5–4) in microbial richness despite observable blooms of lithoautotrophic iron-oxidizing Betaproteobacteria and degraders of aromatic compounds, which hence impact the aquifer redox state and the carbon fate. Host-basalt dissolution releases nutrients and energy sources, which sustain the growth of autotrophic and heterotrophic species whose activities may have consequences on mineral storage
    corecore