3,512 research outputs found

    Variance In Fade-time Of A Gamma-gamma Distributed Irradiance Signal

    Get PDF
    Free-space optical communications are predominantly hindered by optical turbulence, an effect caused by temperature and pressure variations within the atmosphere. The result is an optical wave interfering with itself due to multipath propagation via tiny refractive-index fluctuations across the wave-front. Optical communication systems are affected when the channel conditions induce fading in the irradiance signal that is received at the detector. The nature of optical interference imparted by the atmosphere is a random process and therefore the received irradiance signal is often characterized by an appropriate probability density function (PDF). Data collected during past free-space optical experiments in the atmosphere support the gammagamma distribution as a practical PDF model for received irradiance fluctuations, although the irradiance fluctuations do occasionally tend towards a lognormal distribution. Utilization of the gamma-gamma irradiance PDF allows for calculation of statistical moments of the irradiance threshold level-crossing distribution. Presented analysis focuses on the results of the gamma-gamma irradiance PDF. Previously, expressions were developed for the expected number of gamma-gamma distributed irradiance threshold level-crossings. Expressions for the mean square number of gamma-gamma distributed irradiance threshold level-crossings are derived and presented. The derived expressions lead to the mean and variance of signal fade time. Outcomes of the derived expressions are presented in relation to free-space optical communication system performance. iii Comparisons are made between the theoretical analysis and experimental data taken at the Innovative Science and Technology Facility (ISTEF) located at the Kennedy Space Center in Cape Canaveral, Florida. The strength of the atmospheric turbulence is often characterized by three measurable parameters: the refractive index structure constant �� 2 , the inner scale �0 , and the outer scale �0 . The optical path (�~1��) was instrumented such that direct comparisons could be drawn between the measured atmospheric turbulence parameters and the parameters of the gamma-gamma irradiance model. Variance of fade time data were found to agree well for smaller apertures where effects of aperture averaging are not present and in cases where scintillation is weak to moderate. It is suggested that a more appropriate PDF, with a heavier focus on aperture averaging, may be applied in future studies of these fade statistics

    Selected press articles about CIAT activities relates to Hurricane Mitch

    Get PDF

    Host Growth Can Cause Invasive Spread of Crops by Soilborne Pathogens

    Get PDF
    Invasive soilborne plant pathogens cause substantial damage to crops and natural populations, but our understanding of how to prevent their epidemics or reduce their damage is limited. A key and experimentally-tested concept in the epidemiology of soilborne plant diseases is that of a threshold spacing between hosts below which epidemics (invasive spread) can occur. We extend this paradigm by examining how plant-root growth may alter the conditions for occurrence of soilborne pathogen epidemics in plant populations. We hypothesise that host-root growth can 1) increase the probability of pathogen transmission between neighbouring plants and, consequently, 2) decrease the threshold spacing for epidemics to occur. We predict that, in systems initially below their threshold conditions, root growth can trigger soilborne pathogen epidemics through a switch from non-invasive to invasive behaviour, while in systems above threshold conditions root growth can enhance epidemic development. As an example pathosystem, we studied the fungus Rhizoctonia solani on sugar beet in field experiments. To address hypothesis 1, we recorded infections within inoculum-donor and host-recipient pairs of plants with differing spacing. We translated these observations into the individual-level concept of pathozone, a host-centred form of dispersal kernel. To test hypothesis 2 and our prediction, we used the pathozone to parameterise a stochastic model of pathogen spread in a host population, contrasting scenarios of spread with and without host growth. Our results support our hypotheses and prediction. We suggest that practitioners of agriculture and arboriculture account for root system expansion in order to reduce the risk of soilborne-disease epidemics. We discuss changes in crop design, including increasing plant spacing and using crop mixtures, for boosting crop resilience to invasion and damage by soilborne pathogens. We speculate that the disease-induced root growth observed in some pathosystems could be a pathogen strategy to increase its population through host manipulation. © 2013 Leclerc et al.ML thanks the Institut Technique franc¸ais de la Betterave industrielle (ITB) for funding this project. CAG and JANF were funded by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Fermionic realization of two-parameter quantum affine algebra Ur,s(sln)U_{r,s}({sl_n})

    Full text link
    We construct all fundamental modules for the two parameter quantum affine algebra of type AA using a combinatorial model of Young diagrams. In particular we also give a fermionic realization of the two-parameter quantum affine algebra

    Remarks on Higgs Mechanism for Gravitons

    Full text link
    We construct two kinds of model exhibiting Higgs mechanism for gravitons in potentials of scalar fields. One class of the model is based on a potential which is a generic function of the induced internal metric HABH^{AB}, and the other involves a potential which is a generic function of the usual metric tensor gμνg_{\mu\nu} and the induced curved metric YμνY_{\mu\nu}. In the both models, we derive conditions on the scalar potential in such a way that gravitons acquire mass in a flat Minkowski space-time without non-unitary propagating modes in the process of spontaneous symmetry breaking of diffeomorphisms through the condensation of scalar fields. We solve the conditions and find a general solution for the potential. As an interesting specific solution, we present a simple potential for which the Higgs mechanism for gravitons holds in any value of cosmological constant.Comment: 13 page
    • …
    corecore