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ABSTRACT 

Free-space optical communications are predominantly hindered by optical turbulence, an effect 

caused by temperature and pressure variations within the atmosphere. The result is an optical 

wave interfering with itself due to multipath propagation via tiny refractive-index fluctuations 

across the wave-front. Optical communication systems are affected when the channel conditions 

induce fading in the irradiance signal that is received at the detector. The nature of optical 

interference imparted by the atmosphere is a random process and therefore the received 

irradiance signal is often characterized by an appropriate probability density function (PDF). 

Data collected during past free-space optical experiments in the atmosphere support the gamma-

gamma distribution as a practical PDF model for received irradiance fluctuations, although the 

irradiance fluctuations do occasionally tend towards a lognormal distribution. 

 

Utilization of the gamma-gamma irradiance PDF allows for calculation of statistical moments of 

the irradiance threshold level-crossing distribution. Presented analysis focuses on the results of 

the gamma-gamma irradiance PDF. Previously, expressions were developed for the expected 

number of gamma-gamma distributed irradiance threshold level-crossings. Expressions for the 

mean square number of gamma-gamma distributed irradiance threshold level-crossings are 

derived and presented. The derived expressions lead to the mean and variance of signal fade 

time. Outcomes of the derived expressions are presented in relation to free-space optical 

communication system performance. 
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Comparisons are made between the theoretical analysis and experimental data taken at the 

Innovative Science and Technology Facility (ISTEF) located at the Kennedy Space Center in 

Cape Canaveral, Florida. The strength of the atmospheric turbulence is often characterized by 

three measurable parameters: the refractive index structure constant 𝐶𝑛
2, the inner scale 𝑙0, and 

the outer scale 𝐿0. The optical path (𝐿~1𝑘𝑚) was instrumented such that direct comparisons 

could be drawn between the measured atmospheric turbulence parameters and the parameters of 

the gamma-gamma irradiance model. Variance of fade time data were found to agree well for 

smaller apertures where effects of aperture averaging are not present and in cases where 

scintillation is weak to moderate. It is suggested that a more appropriate PDF, with a heavier 

focus on aperture averaging, may be applied in future studies of these fade statistics. 
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1. INTRODUCTION 

1.1 Free-Space Optical Communication Systems 

Information transfer is continually given the expectation of and accomplishing the feat of 

attaining a greater quantity of data throughput. Large bandwidth (~10Gps) free-space optical 

(FSO) communication systems have been demonstrated in a range of scenarios from short 

distance to long distances; however, wide-spread use of such systems has not yet occurred [1-3]. 

It can be difficult to establish reliable FSO communication systems especially as the atmospheric 

conditions change on an hourly basis [4, 5].  Optical communication system engineers have long 

been familiarized with the twinkling phenomenon (similar to that of a star) imparted by the 

atmosphere when an object is viewed at a long distance. This concept is commonly referred to as 

scintillation; it is this phenomenon that can induce fading on an optical signal. Analyses of 

scintillation statistics are important for the reliable operation of an FSO system because 

information cannot be passed through the channel by the transmitter when the signal is not 

received by detector. This analysis will focus on real-time utilization of atmospheric parameters 

to model the amount of time the signal is available at the receiver side of the communication 

channel. 

1.2 Atmospheric Turbulence 

The universal method to understanding atmospheric turbulence and its interaction with optical 

system performance has been based on micrometeorology, use point measurements of local 

gradients, wind shear, and other parameters [6, 7] . However, to characterize atmospheric 

turbulence over long distances it is best to use macro-scale parameters such as air temperature, 

wind speed, wind direction, and relative humidity, all of which do not vary too greatly with 
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distance. The refractive index structure parameter, 𝐶𝑛
2 (units of meters raised to the negative two 

thirds) is widely considered one of the most important parameters in characterizing propagation 

through optical turbulence because it is directly related to the modulation transfer function 

(MTF) of the atmosphere [7]. Researchers such as Kopeika have introduced simple predictive 

meteorological models of 𝐶𝑛
2 based upon measurements of temperature, relative humidity, wind 

speed, and solar flux [6]. The effect of 𝐶𝑛
2 become increasingly detrimental over when analyzing 

longer propagation path lengths. It is therefore important to develop theory based upon 

parameters that can be directly related to the atmospheric conditions. 

 

Since the 1970‟s there have been studies on the effects of scintillation on a laser beam 

propagating through the atmosphere. It has been found that 𝐶𝑛
2 was not adequate enough to fully 

encompass the effects of atmospheric turbulence. Since the models did not accurately predict 

experimental results, additional parameters were introduced in order describe the naturally 

occurring phenomena of atmospheric turbulence. Two additional parameters of importance are 

the inner scale of atmospheric turbulence 𝑙0 and the outer scale of atmospheric turbulence 𝐿0. 

Several methods have been developed to infer the useful atmospheric parameters such as the 

refractive index structure parameter, 𝐶𝑛
2, the temperature structure parameter 𝐶𝑇

2, the inner scale 

of turbulence 𝑙0, the outer scale of turbulence 𝐿0, and Fried‟s coherence length 𝑟0. Many of these 

methods have been proven accurate in the presence of weak turbulence and over short path 

lengths [7]. Commercial instruments have been developed based upon 1970‟s theory, Scintec 

instruments are utilized in these experiments [8]. This research explores the phenomena of 

optical turbulence and aspects of its impact on the implementation of optical communication 
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systems. To characterize the optical path in the atmospheric turbulence, measurements from 

commercial instruments are used to estimate the channel model parameters. 

1.3 Significant Contribution to Field of Study 

If an optical wave is traveling along a path within a material, the characteristics of the traversed 

material impart a number of effects on the wave. For an optical wave propagating within 

atmospheric turbulence, the spatial state and the temporal evolution of the atmospheric 

propagation path impart characteristics of its statistical conditions. When situated with random 

fields it is a usual practice to develop models based upon direct observations or experiments. A 

large number of models have been created to predict the statistical structure of atmospheric 

turbulence with respect to optical wave propagation, namely those developed by the theories of 

Tatarskii and Kolmogorov  [7, 9]. Although meaningful progress towards reliable system 

operation has been achieved, a number of circumstances arise in which models do not accurately 

predict the phenomena. This thesis will focus on the further development of predictive models 

that are practical from a modern communication engineering approach. 

One such aspect of free-space optical communication system engineering deals with the 

fluctuations of a received irradiance signal, and the amount of time the irradiance signal spends 

below a specified irradiance threshold level. The expected value (first-moment) of the number of 

irradiance signal-irradiance threshold level crossings within a specified time interval can be 

related to the expected duration of time during which irradiance will signal fade, referred to as 

mean fade time. Much work in the past has been focused on mean fade time calculations for 

various models of the received irradiance probability density function [7, 10-13]. The distinction 

of this dissertation is to derive an expression for the variance of fade time, such that a standard 
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deviation of fade time can be represented about the mean fade time value. Specifically, several 

approaches will be taken in attempt to develop a model for the expected mean squared value 

(second-moment) of the number of irradiance signal- irradiance threshold level crossings within 

a specified time interval.
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2. BACKGROUND 

The city lights twinkling as seen from an airplane and the steam that appears to be rising from 

the asphalt on a hot day are a result of atmospheric turbulence. What is seen is due to differences 

in the refractive index of the atmosphere. Random fluctuations in the index of refraction cause: 

the spreading of the beam beyond that of the diffraction limit, random movement of the beam 

center (beam wander), loss of spatial coherence, and random fluctuations in the irradiance hereby 

referred to as scintillation [13]. The changes in refractive index are due to temperature gradients 

between the earth‟s surface and the atmosphere‟s air give rise to the phenomenon of atmospheric 

turbulence [5, 9, 14]. Atmospheric turbulence is normally described with the refractive-index 

structure parameter 𝐶𝑛
2 , as it is the most commonly used term in literature to quantify refractive 

strength [9]. 

 

Nature usually presents itself in a manner that requires analysis beyond that which an outcome 

can be found deterministically. It is a standard approach of engineers, physicists, and 

mathematicians alike to describe such phenomena in terms of a random, or stochastic, process. In 

the study of random processes, random variables are used to represent quantities that which are 

non-deterministic. Examination of statistical behavior often leads to deeper insights to the 

phenomena of study. This section will provide an introduction to atmospheric turbulence, and 

briefly describe some of the tools used in study of the phenomenon. 

2.1 Optical Wave Propagation 

Optical waves may be practically described by the properties and shape of their wave front. We 

start by introducing the Cartesian coordinates 𝑥, 𝑦, and 𝑧. We will use 𝑥 to denote horizontal 
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dependence, 𝑦 to denote vertical dependence, and 𝑧 to denote dependence along the optical path 

length (also referred to as propagation path 𝐿). As is practice, the complex number square root of 

negative one is denoted 𝑖 =  −1. The vector 𝑹 will represent the Cartesian coordinates in three 

spatial dimensions. The magnitude of 𝑹 will be denoted by the radial distance 𝑅, given as 

 𝑅 =   𝑹 =  𝑥2 + 𝑦2 + 𝑧2. (2.1) 

 

 

Next, we briefly introduce the fundamental concept of wavelength 𝜆 (unit of meters), or 

alternatively their corresponding wave number 𝑘 = 2𝜋/𝜆 (unit of radians inverse meters). 

Detectors will only be operable within a range of wavelengths, efficiency will also depend on the 

chosen wavelength [15]. 

 

Generally there are three basic models in use to depict electromagnetic waves in the optical or 

near-infrared regimes: plane waves, spherical waves, and Gaussian beam waves [7]. The most 

basic type is an unbounded wave with amplitude 𝐸0 and phase 𝜙0 that is constant with the 

respective horizontal and vertical Cartesian coordinates 𝑥 and 𝑦. We will hereby refer to this 

form of optical wave as a plane wave, and describe it by the complex field amplitude 𝑈0. The 

complex field amplitude of a plane wave is often written as a function of optical path length 𝑧, 

with constant horizontal dependence 𝑥 and constant vertical dependence 𝑦 as 

 𝑈0 𝑥, 𝑦, 𝑧 = 𝐸0 𝑧 𝑒𝑖𝜙 𝑧  . (2.2) 
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A second type of unbounded wave model, which is derived from the from the properties of point 

source light propagation, is referred to as a spherical wave and its complex field amplitude is 

given as 

 𝑈0 𝑥, 𝑦, 𝑧 = lim
𝑅→0

𝐸0 𝑧 𝑒𝑖𝑘𝑅

4𝜋𝑅
 . (2.3) 

 

This type of wave is often used for a small-aperture source, or for a source that exhibits a large 

divergence angle [7]. It is noted that the spherical wave complex field amplitude will decrease 

with increasing distance from the radiation source. The experimental data presented in the 

analysis will follow the spherical wave model.  

 

A third pertinent type of wave model is referred to as a Gaussian beam wave. This wave model 

exhibits a finite size, and is described as a function of optical path by 𝐴𝐵𝐶𝐷 matrix 

transformations. The Gaussian-beam wave has a complex field amplitude given at the plane of 

the optical transmitter (𝑧 = 0) as 

 𝑈0 𝑥, 𝑦, 0 = 𝑎0 exp  −
𝑥2 + 𝑦2

𝑊0
2 −

𝑖𝑘

2𝐹0
   , (2.4) 

 

where 𝑎0 is the „on-axis‟ (𝑥 ≅ 𝑦 ≅ 0) amplitude, 𝑊0 is the beam spot radius (radial distance 

from on-axis where the field amplitude is measured to be 𝑎0 ∙ 𝑒−1), and 𝐹0 is the phase front 

radius of curvature [7]. Gaussian-beam wave models are useful in expediting many modeling 

aspects especially those of lumped elements [16, 17]. The Gaussian-beam model will not be 

utilized in this analysis because the spherical wave model provides a much readier approach to 

deriving parameters [7, 10, 13]. 
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2.2 Optical Wave Detection 

Electronic receivers of optical energy are modeled as square-law devices, where the output is a 

current generated proportional to the incident intensity. The primary focus of this analysis will be 

on the direct detection of intensity modulated optical waves transmitted through atmospheric 

turbulence. Optical signal power received by the photo-detector is measured proportional to the 

detector‟s output current, a relationship specified by manufacturer of the commercial instrument 

[18]. Direct detection of irradiance is that only the power of the optical signal is measured by the 

detector as photon energy is converted to electrical current. Measurements of the instantaneous 

power are made by averaging the photoelectrons generated by a detector over an integration 

period of time 𝜏𝑖 . This period is fixed within demonstrable limits. The generated photoelectrons 

may be due to the received laser signal, or the various noise sources present within the system. It 

is convenient to state the generated signal and noise currents in terms of a photoelectron rates. 

The signal current from the detector is given by 

 𝑖𝑠 =  
𝜂𝑞

𝜈
 𝐺𝐼𝐴, (2.5) 

where 𝐼 is the detected laser signal irradiance (units of Watts per meters squared), 𝜂 is the 

detector efficiency, 𝑞 is the electron charge (Coulombs),  is Planck's constant, 𝜈 is the optical 

frequency (unit of Hertz), 𝐺 is the detector gain, and 𝐴 is the area of the detector (units of meters 

squared) [6]. 

 

As a result of the photoelectron process, the received signal will be a detector current 𝑖𝑑𝑒𝑡  

 𝑖𝑑𝑒𝑡 = 𝑖𝑠 + 𝑖𝑛 , (2.6) 

where 𝑖𝑠  is the detected optical signal and 𝑖𝑛  is total the noise introduced throughout the 
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detection process. The noise current 𝑖𝑛  will be considered to include all noise sources within the 

detected current. This term contains background (in-band sunlight irradiance) noise 𝑖𝑛 ,𝑠𝑢𝑛  and 

noise current generated by detector 𝑖𝑑𝑒𝑡 . The detector noise current is stated explicitly as 𝑖𝑛 =

𝑖𝑛 ,𝑠𝑢𝑛 + 𝑖𝑛 ,𝑑𝑒𝑡 .The detector noise current will be present within the detector even if laser signal is 

not transmitted. If one were to place the lens cover over the lens system, as such to shield any 

incoming light and place the detector in complete darkness, we would expect the only noise 

present to be detector noise (𝑖𝑛 = 𝑖𝑛 ,𝑑𝑒𝑡 ). To be captured as a digitized signal, the detector 

current must be transformed into a detector voltage 𝑣𝑑𝑒𝑡  that measured across a minimal-detector 

resistance. One such method for measuring such voltage is a transresistance amplifier; this 

configuration provides extremely small input, output and feedback resistances [19]. 

Commercially packaged products geared towards research will be utilized in the detection 

scheme for this analysis to reduce noise values, alternative sources of error, and complexity of 

task. 

 

To receive the transmitted laser signal at the receiver, an optical imaging system must be 

utilized. The system will generally consist of an assortment of collection lens to focus the 

incoming beam onto a charge-coupled device (CCD) whose output current can be digitally 

transcribed. Several filters should be employed to ensure maximum benefit in the receiver‟s 

signal to noise ratio. Namely, the light incident on the collection lens should be optically filtered 

to match the spectral shape of the transmit laser beam. For example, a 532nm laser beam with a 

factory-specified or experimentally measured spectral line width should be received by an 

imaging system that supports 532nm radiation and is filtered with a coating or glass-placement 
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that is transparent to only wavelengths within the spectral range of the transmitting laser. Optical 

filters covering a wide range of specifications: longpass, shortpass, and bandpass are readily 

purchasable on commercial websites such as Thorlabs [20]. An optical bandpass filter at the 

receiver with a spectral range matching the transmitter laser‟s spectral range will be assumed. 

Figure 1: Direct detection of an optical signal exemplifies a simple overview of the 

aforementioned scheme. 

 

 

Figure 1: Direct detection of an optical signal. 

 

For the experiments supporting the proceeding analysis, the primary source of noise within the 

detector receiver is assumed to be thermal noise. This assumption is taken to be valid because the 

detector was in an outdoor environment (at the Kennedy Space Center in Cape Canaveral, FL) 

and the components were not thermally cooled. When the photodiode receiver is exposed to 

sunlight, the noise current generated by in-band background (sunlight) is known to exceed the 

thermal noise current by many orders of magnitude. Note that in-band background (sunlight) 
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irradiance will contribute the biggest portion of noise when the detector is exposed to daytime 

conditions. 

2.3 Effects of Atmospheric Turbulence on Optical Wave Propagation 

The cycle of heating of the Earth‟s ground during the day and its cooling during night leads to 

the driving factor of atmospheric turbulence. The process of convection heat transfer is 

understood by taking that the heat flux 𝑞 ′′  is equal to the rate of heat transfer 𝑄  from the surface 

divided by surrounding surface area 𝐴, or 𝑞 ′′ = 𝑄 /𝐴 [21]. The heat flow vector is considered to 

be positive when heat flows from the surface to the fluid. From [21], the heat transfer 

coefficient, , is defined in terms of the heat flux at the fluid to surface boundary and a 

temperature difference, ∆𝑇 as 

  ≡
𝑞 ′′

Δ𝑇
 , (2.7) 

 

with the units 
𝑊

𝑚 2 ∙ ℃. The temperature difference is the difference between the temperature if the 

surface and the temperature of the fluid outside the boundary layer. The total rate at which heat is 

transferred from an isothermal surface is most conveniently obtained using the average heat 

transfer coefficient  . The relationship between heat transfer, temperature difference, and surface 

area is then readily found to be 

 𝑄 =   𝐴 Δ𝑇, (2.8) 

 

in units of Watts [21]. It is suggested from experimental data that in the case of two fixed points 

close to the surface, high-frequency structures move with the mean wind velocity, and low-

frequency structures move similar to a convective velocity [5]. A visual outcome of the low-
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frequency structure effect may be observed in Figure 2, with an experiment involving buoyant 

thermals that rise from a heated surface [22].  

 

Figure 2: Low-frequency thermal plume structures rising from a heated surface. 

 

Figure 3 depicts the cross section of a turbulent high-frequency structure under the exposure of 

wind. In this case, smoke in a wind tunnel is illuminated by laser light [22].  

 

Figure 3: High-frequency thermal plume structures rising from a heated surface in turbulent conditions, caused by wind shear. 
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It is useful to model turbulence with parameters concerning the characteristics of its statistical 

nature. From a physical standpoint the refractive index structure parameter, 𝐶𝑛
2 (units of 𝑚−2/3), 

is a measure of the strength of the fluctuations in the refractive index and therefore the 

magnitude of atmospheric turbulence [15]. It is directly related to the modulation transfer 

function (MTF) of the atmosphere, which is central to communication system investigation [14, 

23]. The refractive index of air at optical wavelengths is known to follow the formula 

 𝑛 = 1 + 77.6  1 +
7.52 ∙ 10−3

𝜆3
 
𝑃

𝑇
∙ 10−6  , (2.9) 

 

where 𝜆 is the wavelength of light in micrometers, 𝑃 is the atmospheric pressure in millibars, 

and 𝑇 is the atmospheric temperature in Kelvin [15]. 

 

When studying a randomly fluctuating refractive index, it is useful to model the index of 

refraction at a position 𝒓 and time 𝑡 as the sum of two parts, 

 𝑛 𝒓, 𝑡 = 𝑛0 𝒓, 𝑡 + 𝑛1 𝒓, 𝑡 , (2.10) 
 

where 𝑛0 represents the deterministic, slowly changing contribution (such as variation with 

height above the ground), and 𝑛1 represents the random fluctuations. In the case of atmospheric 

turbulence, 𝑛1 is the term that the analysis center on. Structure functions may be utilized to 

properly describe the effects of atmospheric turbulence on optical wave propagation. The 

structure function of the index of refraction, 𝐷𝑛 𝒓 , can be defined as 

 𝐷𝑛 𝒓 ≡   𝑛1 𝒓𝟏, 𝑡 − 𝑛1 𝒓𝟐, 𝑡  2 , (2.11) 
 

where the fluctuating parts of the refractive index are observed at positions 𝒓𝟏 and 𝒓𝟐, time 𝑡, and 

bracket notation   ∙   represents the ensemble average [7, 15]. By use of dimension analysis, 



14 

 

Kolmogorov showed that the longitudinal structure function of wind velocity parallel to the 

vector 𝑹 (connecting two observation points) in the inertial range satisfies the universal 2/3 

power law and therefore can be modified to lead to the expression [7, 24] 

 𝐷𝑛 𝒓 =   𝑛1 𝒓𝟏, 𝑡 − 𝑛1 𝒓𝟐, 𝑡  2 =  
𝐶𝑛

2𝑹2/3 𝑙0 ≪  𝑹 ≪ 𝐿0

𝐶𝑛
2𝑙0

−4/3
𝑹2  𝑹 ≪ 𝑙0

  
(2.12) 

It is extremely difficult to predict the refractive index structure constant from Equation (2.12), a 

method based on the concept of temporal hour can approximately model 𝐶𝑛
2 utilizing 

macrometeorological parameters.  This relationship is specified as 

 

𝐶𝑛
2 = 3.8 ∙ 10−14𝑊𝑇𝐻 + 2 ∙ 10−15  𝑇 − 2.8 ∙ 10−15  𝑅𝐻 + 2.9 ∙ 10−17  𝑅𝐻2

− 1.1 ∙ 10−19  𝑅𝐻3 − 2.5 ∙ 10−15  𝑊𝑆 + 1.2 ∙ 10−15𝑊𝑆2 − 8.5

∙ 10−17𝑊𝑆3 − 5.3 ∙ 10−13 , 

(2.13) 

where 𝑊𝑇𝐻  is temporal hour weight, 𝑇 is air temperature in units of Kelvin, 𝑅𝐻 is relative 

humidity as a percentage, and 𝑊𝑆 is wind speed in units of meters per second [6, 25]. It is 

important to note that this expression gives 𝐶𝑛
2 at a height of 15 meters, and therefore the 

Kopeika model must be scaled appropriately with height and time of day [25-27]. 

 

A simple model to scale 𝐶𝑛
2 between two near-ground heights 0 and 1 during daytime hours 

has been illustrated in literature to be  

 𝐶𝑛
2 1 = 𝐶𝑛

2 0  
0

1
 

4/3

, (2.14) 

where the height 0 > 1.  This height scaling model is only valid for ground-band 

measurements within the atmospheric surface layer [28]. It has been discovered a 2/3 power law 

may better describe behavior during evening hours, the relationship is given as 
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 𝐶𝑛
2 1 = 𝐶𝑛

2 0  
0

1
 

2/3

. (2.15) 

The change in power-law is postulated to be as such because the Earth‟s surface radiates the heat 

it absorbed during the daytime and becomes colder than the air (producing more stable 

conditions) [28, 29]. 

 

Typical values for 𝐶𝑛
2  

are between 10−16  𝑚−2/3 for weak fluctuations and 10−12  𝑚−2/3 for 

strong fluctuations [30]. Figure 4 illustrates the behavior of 𝐶𝑛
2  

throughout a typical day. The data 

were taken by the UCF WPRG team propagating a commercial scintillometer‟s beam over the 

1km laser range at the Innovative Science and Technology Experimental Facility (ISTEF), 

located within the Kennedy Space Center, FL [26, 31]. When there is no sunshine, 𝐶𝑛
2  

is low 

because there is no solar energy for the ground to absorb. As the sun begins to rise,  𝐶𝑛
2  

increases 

until it reaches a maximum in the middle of the day indicating a maximum point of atmosphere 

induced turbulence. As the sun begins to set, 𝐶𝑛
2  

decreases which indicates atmospheric 

turbulence is subsiding. An interesting trend to note on the plot is the sudden drop in 𝐶𝑛
2 before 

and after sunrise. These two dips are referred to in literature as the individual day‟s quiescent 

periods [28]. This drop in 𝐶𝑛
2  

occurs due to the temperature gradient between the ground and 

atmosphere being minimal. 
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Figure 4: 24-hour Cn

2 profile of a typical summer day at the ISTEF laser range. 

 

The atmosphere is thought to consist of a continuum of turbulent cells. The maximum size of 

which is usually on the order of one to one hundred meters, and is known as the outer scale of 

atmospheric turbulence 𝐿0. These large cells act like weak positive lenses ( 𝑓~1km ) and have a 

focusing effect on the propagating beam [7]. Due to inertial forces, these large cells will 

continually break up into smaller cells until reaching a minimum size on the order of millimeters, 

known as the inner scale of atmospheric turbulence 𝑙0. These small cells act like negative lenses 

and cause the beam to diverge. The turbulent cells attenuate and redirect the energy of a 

propagating laser beam. The inner and outer scales of turbulence represent the range of scale 

sizes over which isotropic turbulence is formed [7]. 
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Physically, the atmosphere can be visualized as a collection of randomly placed lenses 

diffracting and refracting the propagating light. A pictorial description of the process is shown in 

Figure 5 where it can be observed that the smallest of the turbulent cell sizes corresponds to the 

inner scale parameter 𝑙0, and the largest of the cell sizes corresponds to the outer scale 

parameter 𝐿0. 

 

Figure 5: Laser beam propagation through atmospheric turbulence. 

 

When discussing the effects that parameters such as 𝐶𝑛
2, 𝑙0, and 𝐿0 have on the channel behavior, 

and its implications on FSO communication system design, it is useful to develop tools for 

analysis of the irradiance signal detected by the receiver. The scintillation index describes the 

fluctuations of the received irradiance after propagating through the atmosphere. It is calculated 

through the normalized variance of the irradiance signal, 

 𝜍𝐼
2 =

 𝐼2 

 𝐼 2
− 1, (2.16) 

where 𝐼 is a signal that represents the irradiance of the optical wave and  𝐼𝑛   denotes the 

 𝑛𝑡order ensemble average of the irradiance signal [7, 15]. A direct relationship between the 

magnitude of 𝐶𝑛
2, 𝑙0, and 𝐿0 can be demonstrated with the optical wave models described in 
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Section 2.1 Optical Wave Propagation [7]. There two major regimes of turbulence, each 

representing a degree of turbulence severity. Under the weak turbulence conditions the 

scintillation index is generally less than unity 𝜍𝐼
2 < 1 [7, 10]. Weak turbulence implies a 

somewhat of a combination of a low 𝐶𝑛
2 value and/or small path length 𝐿. The irradiance 

fluctuations seen at the receiver are less severe and less detrimental to communication system 

operation [1, 7, 13]. As the scintillation index approaches unity, the statistics shift into a regime 

referenced as moderate to strong turbulence 𝜍𝐼
2 > 1. Much of the developed theory is focused on 

the weak turbulence regime, however strong turbulence is based from the same principles [7, 

10]. The strong turbulence regime implies a large irradiance signal variance, as well as a large 𝐶𝑛
2 

and/or path length 𝐿. 

2.4 Aperture Averaging 

One other parameter that may be inferred from measurements of 𝐶𝑛
2 and 𝑙0 is the correlation 

radius 𝜌0 of the atmospheric turbulence [11, 32]. This parameter represents the 1/e point of the 

complex degree of coherence function (DOC) [7]. It provides a measure of the distance over 

which irradiance values will exhibit strong correlation. This analysis utilizes spherical wave 

theory, therefore the spherical wave spatial correlation radius is presented as [7] 

 𝜌𝑠𝑝 =  0.55𝐶𝑛
2𝑘2𝐿 −3/5 , 𝑙0 ≪ 𝜌𝑠𝑝 ≪ 𝐿0 , (2.17) 

where 𝑘 is the wave number, 𝐿 is the path length, and it is assumed that 𝐿0 = ∞. Equation (2.17) 

effectively quantifies the amount of atmospheric turbulence induced by the channel with account 

of refractive-index structure constant and the inner-scale, but with the outer-scale dependence 

neglected. 
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A reduction in the fluctuations occurs as the radius of the receiving aperture is increased beyond 

the correlation radius 𝜌0 of the atmospheric turbulence [11, 32]. The reduction is referred to as 

aperture averaging because the higher-frequency fluctuations are averaged (integrated), as 

would happen if a high-bandwidth signal is passed through a low-pass filter. As a general rule, 

aperture averaging effects are mostly present when the aperture diameter exceeds the spatial 

coherence length by three times or more (𝐷 > 3𝜌𝑠𝑝 ) [7, 13]. We will refer to this rule of thumb 

as the aperture averaging criteria in the proceeding analysis. 

 

The scintillation index is also affected by both inner scale 𝑙0 and outer scale 𝐿0; these parameters 

also play an important role in aperture averaging [7, 33-35]. The inner scale effects are 

prominent in weak to moderate turbulence and cause an increase in scintillation index, while 

outer scale effects occur in strong turbulence and reduce the scintillation index [7]. Aperture 

averaging and its effects will be further investigated when experimental data is compared to the 

gamma-gamma model. 

2.5 Optical Communication System Model 

The main advantage of an optical communication system when compared to a radiofrequency 

communication system is the increase in channel capacity. Modern FSO systems operate on the 

order of gigabits per second, whereas RF systems operate on the order of megabits per second [7, 

36]. If a portion of the transmitted signal cannot be detected by the receiver it will result in the 

loss of large amounts of data. The effect of such information losses must be mitigated or 

accounted for, however operation may be possible if a location sensitive approach is maintained 

[1]. A buffering scheme to queue important data may or may not be utilized when the received 
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signal fades below the detectable signal threshold. Additionally, in order to properly transmit 

information through the channel a time-synchronization must be maintained between transmitter 

and receiver [37]. If fades occur too frequently, time-synchronization will not be maintainable 

and neither will the communication link. It is therefore desirable to understand the statistics of 

fade time. 

 

For a communication system to function properly, it must be able to transmit information across 

a channel in a reliable manner. The basic outline of a communication channel is demonstrated in 

Figure 6: Communication channel model [37]. Information must be formatted, modulated, and 

then transmitted across the channel. On the receiving end, the signal must be demodulated, 

detected, and a decision must then be made as to what the information content is. Noted in 

Figure 6 is the time-synchronization requirement, this must be maintained between the 

modulator at the transmitter and demodulator at the receiver to allow phase-alignment of bit-

slots [36]. The analysis greatly centers on the channel portion of the communication system 

model, and the effect the channel has at the receiver. 

 

Figure 6: Communication channel model. 
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A key factor in free-space optical (FSO) communication systems is the communication link 

availability. To overcome noise sources within the system, transmission of data requires the 

signal level detected at the receiver to be above a specified level. The signal-to-noise ratio SNR 

can be related to probability of signaling error, and therefore plays a critical role in determining 

the amount of information that can be passed through the channel [36, 37]. In FSO 

communication system design, it is useful to define an irradiance threshold level 𝐼𝑇  at which 

irradiance received by the detector 𝐼 must exceed to successfully operate at a specified data rate 

[1, 7, 10, 13, 34]. We will initially define our link availability as the percentage of time that 

which the received irradiance 𝐼 is greater than the minimum detectable threshold irradiance 𝐼𝑇 , 

or 𝐼 ≥ 𝐼𝑇 . If the received irradiance signal is below irradiance threshold, it is said to be faded. It 

is helpful to define the probability of fade as the integral relation 

 
Pr 𝐼 ≤ 𝐼𝑇 =  𝑝 𝐼 𝑑𝐼

𝐼𝑇

0

, (2.18) 

where 𝑝(𝐼) is the irradiance signal probability density function. 

 

We are not only interested in the average amount of time the received irradiance signal fades, but 

also the variance in irradiance signal fade times. Average of received irradiance fade time has 

been approached for a number of channel models, therefore theory to analyze such scenarios is 

available [38-41].Variance in received irradiance signal fade time is somewhat less developed in 

FSO system analysis; although theory exists that facilitates analysis [7, 13, 38, 39]. The focus 

will be variance of fade time as it will provide insight as to how to predict the distribution fade 

times. The analysis is deemed useful and important to FSO communication system theory 



22 

 

because it provides upper and lower bounds to the fade time distribution based upon measurable 

atmospheric parameters [10]. 

 

The fade statistics of the received signal are practical in determining the channel‟s implications 

on a FSO communication system‟s SNR. Even if the transmitting system provides the required 

operable SNR at the receiver, fading induced by the atmospheric propagation channel on the 

received signal can cause the SNR to become temporarily deprecate. For example, suppose an 

optical communication link is operating at 10Gbit per second. If during a period of one second 

the channel were faded below the minimum detectable threshold for a time of 20 milliseconds, 

then, in the best scenario, the system would only be able to deliver 9.8Gbit of data during that 

particular second. This assumes that the optical channel is able to maintain time synchronization 

the entire time it is transmitting [1]. This problem evolves further when considering the fact that 

the transmitter/receiver will require time to resynchronize if the synchronization is lost. 

Frequency of fades (or inter-fade period) will then play an important role; the synchronization 

problem will not be addressed in this analysis. Instead, channel model characteristics will be 

developed. 

 

Namely, the average amount of time and the variance in amount of time a received irradiance 

signal falls below (and stays below) the specified threshold irradiance. The amount of time an 

irradiance signal falls below the specified irradiance threshold level will be referred to hereto as 

irradiance fade time. The notion of irradiance fade time is demonstrated in Figure 7: Single 

incidence of a fade below a specified irradiance threshold (-5dB below the mean), with a half-
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second sample of received irradiance data. If one looks at a distribution of irradiance signal fade 

times, then the attention will be on two major characteristics: average and variance of irradiance 

fade times. For this reason, the same data is shown in Figure 8 but with the ensemble of fade 

times marked for viewing ease. As can be observed, the fade times are not all the same. Some 

fades are shorter in duration, and some fades are longer in duration. The goal of this analysis is to 

not only quantify the average value of fade time, but also the variance in fade time. 

 

Figure 7: Single incidence of a fade below a specified irradiance threshold (5dB below the mean). 
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Figure 8: Ensemble of fades below a specified irradiance threshold (5dB below the mean). 

 

Data cannot be transmitted when a fade occurs, and must then be buffered during fade periods. If 

the buffer size is based solely on the amount of data that would be withheld due to mean fade 

time, it may not adequately compensate for the longer fade times the system would experience 

due to the variance in fade time. Mean irradiance fade time models for FSO systems have been 

previously derived and analyzed [10, 38-41]. A lesser used metric of irradiance threshold level 

crossing statistics is the variance (or the more readily applicable standard deviation) in threshold 

level crossing time. The variance in fade time represents a measure of the fade distribution, as 

the mean fade time only provides an indication about which fade time value the fade time 

distribution is centered about. As a postulation, one could predict the fade distribution to be 

somewhat Gaussian (normal) in nature. We will define mean fade time (as a function of 

threshold irradiance) with the symbol  𝑡 𝐼𝑇  . Variance in fade time will then depend on the 
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mean square fade time as 𝑉𝐴𝑅 𝑡(𝐼𝑇) =  𝑡2 𝐼𝑇  −  𝑡 𝐼𝑇  2, with the standard deviation in fade 

time being the square root of the variance expression[12, 13, 42]. 

 

If the fade distribution is Gaussian in behavior, it would imply roughly ~99% of the fade times 

would lay within three standard deviations of the mean fade time. This would imply that a larger 

buffer size would be needed to compensate for the communication channel. A channel model 

that incorporates a consideration of variance in fade time would also alleviate an additional 

concern. Optical systems operate at such a large data rates (implying large clock rates) and the 

fade times occur on scales many orders of magnitude larger than the clock rate (~103 − 106).  

 

The proceeding study will be used to determine an appropriate method to find the variance in 

fade time of an optical communication link. It is crucial to choose an appropriate channel model 

to evaluate the reliability of a communication channel. For this analysis, the gamma-gamma 

irradiance probability density function model will be utilized to evaluate channel conditions. 
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3. IRRADIANCE FADING OF COMMUNICATIONS CHANNEL 

3.1 Probability Density Function (PDF) Models 

3.1.1 Gamma Distribution 

It is stated that a random variable 𝑋 is gamma distributed if its probability density function 

(PDF) follows the form 

 𝑝𝑋 𝑋 =
𝛼

 𝑋 Γ(𝛼)
 
𝛼𝑋

 𝑋 
 

𝛼−1

exp  −
𝛼𝑋

 𝑋 
 , 𝛼 > 0, 𝑋 > 0. (3.1) 

where 𝛼 represents the gamma model parameter,  𝑋  denotes the average value of the random 

variable 𝑋, and Γ  ∙   denotes the gamma function. The gamma process is said to be unimodal 

with a mode at 𝛼 − 1 when 𝛼 ≥ 1, and when 𝛼 < 1 it is a monotone function that approaches 

infinity as the 𝛼 parameter approaches zero [43]. We will utilize this model as a modulation 

process between a pair of gamma distributed random variables to yield the gamma-gamma 

distribution. It is useful to note that the gamma model can be useful in scenarios where aperture 

averaging imparts a significant impact on the PDF [7, 13]. This concept will be briefly 

mentioned in the analysis, however not utilized in detail. 

3.1.2 Gamma-Gamma Distribution 

From the modified Rytov theory for moderate to strong fluctuations, the distinct large scale and 

small scale effects on the scintillation lead to the assumption that the atmosphere perturbed 

irradiance of an optical wave can be expressed as a modulation of the statistically independent 

large scale fluctuations and the small scale fluctuations [7]. Let irradiance be represented as a 

function of time 𝐼 𝑡 , as well as the large time scale fluctuations 𝑋(𝑡) and the small time scale 
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fluctuations 𝑌 𝑡 . The received irradiance will be a modulation (product) of the large and small 

scale fluctuations, namely 

 𝐼 𝑡 = 𝑋 𝑡 𝑌 𝑡 . (3.2) 

It is taken that the large and small scale fluctuations are normalized such that  𝑋(𝑡) = 1, 

and  𝑌(𝑡) = 1. The second moment of the normalized intensity is 

  𝐼2(𝑡) =  𝑋(𝑡)2  𝑌(𝑡)2 =  1 + 𝜍𝑥
2  1 + 𝜍𝑦

2 , (3.3) 

where 𝜍𝑥
2 and 𝜍𝑦

2 are the large scale and small scale normalized variances (scintillation indices), 

respectively [7]. 

 𝐼(𝑡) = 𝑋(𝑡)𝑌(𝑡) (3.4) 

For the moment, let us consider a stationary process to reduce the notation by removing the 

dependence on the time variable 𝑡. The random variables 𝑋 and 𝑌 are explicitly restated in terms 

of the irradiance 

 𝐼 = 𝑋𝑌. (3.5) 

With each fluctuation process assumed to be gamma distributed, we will denote the density 

distribution function for the large scale process as 

 𝑝𝑋 𝑋 =
𝛼

 𝑋 Γ(𝛼)
 
𝛼𝑋

 𝑋 
 

𝛼−1

exp  −
𝛼𝑋

 𝑋 
 , 𝛼 > 0, 𝑋 > 0, (3.6) 

and the density distribution function for the small scale process as 

 𝑝𝑌 𝑌 =
𝛽

 𝑌 Γ 𝛽 
 
𝛽𝑌

 𝑌 
 

𝛽−1

exp  −
𝛽𝑌

 𝑌 
 , 𝛽 > 0, 𝑌 > 0, (3.7) 
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where Γ(𝛾) is the gamma function, 𝐾𝑝(𝛾) is the modified Bessel function of the second kind, 𝛼 

and 𝛽 are the Gamma-Gamma PDF parameters which represent the effective numbers of large 

scale and small scale scatterers, respectively. 

We attempt to determine a conditional PDF for the irradiance by replacing the small scale 

variable with its relationship to the large scale variable, namely 𝑌 = 𝐼/𝑋. Since the small and 

large scale fluctuations are statistically independent, one may write 

 𝑝𝐼 𝐼 𝑋 =
𝛽 𝛽𝐼/𝑋 𝛽−1

X Γ(𝛽)
exp −𝛽𝐼/𝑋 , 𝛽 > 0, 𝑌 > 0, (3.8) 

and the intensity density function may be determined by marginalizing out the large scale 

variable 𝑋, 

 𝑝𝐼 𝐼 =  𝑝𝐼 𝐼 𝑋) 𝑝𝑋 𝑋 
∞

0

𝑑𝑋 =  𝑝𝑌 𝑌  𝑑𝑌

𝑑𝐼
 
𝑌=

𝐼
𝑋

𝑝𝑋 𝑋 
∞

0

𝑑𝑋. (3.9) 

The first part is readily found to be 

 𝑝𝑌 𝑌  𝑑𝑌

𝑑𝐼
 
𝑌=

𝐼
𝑋

=
𝛽

 𝑌 Γ 𝛽 𝑋
 

𝛽𝐼

 𝑌 𝑋
 

𝛽−1

𝑒−𝛽𝐼 / 𝑌 𝑋 , 𝐼 > 0. (3.10) 

The PDF of a gamma-gamma distributed irradiance can then be written as 

 𝑝𝐼 𝐼 =  𝑝𝐼 𝐼 𝑋) 𝑝𝑋 𝑋 
∞

0

𝑑𝑋 =  𝑝𝑌 𝑌  𝑑𝑌

𝑑𝐼
 
𝑌=

𝐼
𝑋

𝑝𝑋 𝑋 
∞

0

𝑑𝑋 (3.11) 

 

=
𝛽

 𝑌 Γ 𝛽 
 

𝛽𝐼

 𝑌 
 

𝛽−1 𝛼

 𝑋 Γ 𝛼 
 

𝛼

 𝑋 
 

𝛼−1

×  𝑋𝛼−𝛽−1 exp  −
𝛽𝐼

 𝑌 𝑋
+

𝛼𝑋

 𝑋 
 𝑑𝑋

∞

0

. 

 

Using the variable transformation 𝑧 = 𝛼𝑋/ 𝑋  leads to 
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𝑝𝐼 𝐼 =
𝛼𝛽

 𝑋  𝑌 Γ 𝛼 Γ 𝛽 
 

𝛼𝛽𝐼

 𝑋  𝑌 
 

𝛽−1

×  𝑧𝛼−𝛽−1 exp  −𝑧 +
𝛼𝛽𝐼

 𝑋  𝑌 𝑧
 

∞

0

𝑑𝑧 

(3.12) 

 =
1

Γ 𝛼 Γ 𝛽 𝐼
 
𝛼𝛽𝐼

 𝐼 
 

𝛽

 𝑧𝛼−𝛽−1 exp  −𝑧 +
𝛼𝛽𝐼

 𝐼 𝑧
 𝑑𝑧

∞

0

,  

where  𝐼 =  𝑋  𝑌  has been utilized for simplification. The integration in the previous step can 

be evaluated. Assuming substitutions of the form 𝑝 = 𝛽 − 𝛼 and 𝛾 = 2 𝛼𝛽𝐼/ 𝐼  1/2 with note of 

the integral relation for the modified Bessel function of the second kind [44], 

 𝐾𝑝 𝛾 =
1

2
 
𝛾

2
 

𝑝

 𝑒
− 𝑧+

𝛾2

4𝑧
 
𝑧−(𝑝+1)𝑑𝑧

∞

0

, (3.13) 

leads to the result 

 𝑝𝐼 𝐼 =
1

Γ 𝛼 Γ 𝛽 𝐼
 
𝛼𝛽𝐼

 𝐼 
 

𝛽

2  
𝛼𝛽𝐼

 𝐼 
 

 𝛼+𝛽 /2

𝐾𝛽−𝛼  2 
𝛼𝛽𝐼

 𝐼 
  (3.14) 

 =
2

Γ 𝛼 Γ 𝛽 𝐼
 
𝛼𝛽𝐼

 𝐼 
 

 𝛼+𝛽 /2

𝐾𝛽−𝛼  2 
𝛼𝛽𝐼

 𝐼 
 .  

This equation can be again rewritten (for simplicity) by applying the property of the modified 

Bessel function, 𝐾−𝑝 𝛾 = 𝐾𝑝 𝛾 , leading to the gamma-gamma distributed irradiance PDF 

 𝑝𝐼 𝐼 =
2

Γ 𝛼 Γ 𝛽 𝐼
 
𝛼𝛽𝐼

 𝐼 
 

 𝛼+𝛽 /2

𝐾𝛼−𝛽  2 
𝛼𝛽𝐼

 𝐼 
 , 𝐼 > 0. (3.15) 

For the case of normalized irradiance ( 𝐼 = 1) the gamma-gamma distributed irradiance PDF is 

then given as 
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 𝑝𝐼 𝐼 =
2 𝛼𝛽 (𝛼+𝛽)/2

Γ(𝛼)Γ(𝛽)
𝐼(𝛼+𝛽)/2 −1𝐾𝛼−𝛽 (2 𝛼𝛽𝐼), 𝐼 > 0. (3.16) 

 

The large scale scattering parameter 𝛼 and the small scale scattering parameter 𝛽 may be related 

to the scintillation index by calculating the second moment of the gamma-gamma distributed 

irradiance, 

  𝐼2 =  𝐼2𝑝𝐼 𝐼 
∞

−∞

𝑑𝐼 (3.17) 

 =
2

Γ 𝛼 Γ 𝛽 
 
𝛼𝛽

 𝐼 
 

 𝛼+𝛽 /2

 𝐼
 𝛼+𝛽 

2
+1𝐾𝛼−𝛽  2 

𝛼𝛽𝐼

 𝐼 
 

∞

0

𝑑𝐼.  

Using again the following integral relation in Equation (3.13) leads to 

  𝐼2 =
1

Γ 𝛼 Γ 𝛽 
 
𝛼𝛽

 𝐼 
 

𝛼

 𝐼𝛼+1  exp  −𝑧 −
𝛼𝛽𝐼

 𝐼 𝑧
 𝑧− 𝛼−𝛽+1 𝑑𝑧 𝑑𝐼.

∞

0

∞

0

 (3.18) 

Changing the order of integration, making the substitution of variables 𝑌 = 𝛼𝛽𝐼/ 𝐼 𝑧 in the 

integration over 𝐼 and using the integral definition of the gamma function on both integrals yield 

[7, 12, 42] 

  𝐼2 =  
𝛼𝛽

 𝐼 
 

−2
Γ 𝛼 + 2 Γ 𝛽 + 2 

Γ 𝛼 Γ 𝛽 
 (3.19) 

 =  𝐼 2  1 +
1

𝛼
  1 +

1

𝛽
 .  

This may then be related to the scintillation index by the definition, 

 𝜍𝐼
2 =

 𝐼2 

 𝐼 2
− 1 =  1 +

1

𝛼
  1 +

1

𝛽
 − 1. (3.20) 

From the modified Rytov theory for moderate to strong fluctuations 



31 

 

  𝐼2 =  𝑋2  𝑌2 =  1 + 𝜍𝑋
2  1 + 𝜍𝑌

2 . (3.21) 

The large-scale and small-scale gamma-gamma scattering parameters may also be separated and 

written in terms of separate scintillation index contributions, 

 𝛼 =
1

𝜍𝑋
2 , (3.22) 

 𝛽 =
1

𝜍𝑌
2 , (3.23) 

where 𝜍𝑋
2 is the large-scale irradiance scintillation index contribution and 𝜍𝑌

2 is the small-scale 

irradiance scintillation index contribution. 

 

A hint of what is referred to as aperture averaging is present within the gamma-gamma model 

parameters 𝛼 and 𝛽. The gamma-gamma scattering parameter 𝛼 relates to what would typically 

be the largest of turbulent scale sizes. This parameter mainly relates to the physical parameters: 

outer-scale 𝐿0, refractive-index structure parameter 𝐶𝑛
2, and demonstrates a lesser dependence on 

inner-scale 𝑙0. The small-scale scattering parameter 𝛽 relates to what would be the scale sizes 

related to the physical parameters 𝑙0 and 𝐶𝑛
2. Apertures will integrate over a larger number of 

small-scale scatterers than large-scale scatterers (𝛽 > 𝛼). As aperture diameter 𝐷 increases, we 

will typically expect the number of small-scale scattered 𝛽 observed by the receiver aperture to 

increase. From Equation (3.23) we can expect an increase in 𝛽 to decrease the small-scale 

scintillation index contribution 𝜍𝑌
2 [7, 13, 24, 27, 29]. Similarly, an increase in aperture 

diameter 𝐷 will increase the number of observed large-scale scatterers 𝛼. However, the observed 

number of large-scale scatterers 𝛼 will not grow as rapidly as the number of small-scale 

scatterers 𝛽 observed by the aperture because of the scale size difference (𝛽/𝛼~10). Also note 
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that in some cases these parameters can also be approximately the same value [7, 13, 26, 29, 31, 

33-35, 45]. 

 

Occasionally it is useful to define the log irradiance scintillation index in terms of the natural 

logarithm with the expression [7, 13] 

 𝜍ln 𝐼
2 = ln 𝜍𝐼

2 + 1 . (3.24) 

Also useful in the analysis is to note that a closed form solution for the cumulative distribution 

function (CDF) of a gamma-gamma distributed irradiance has been developed. This expression 

is equivalent to probability of fade and presented in terms of the hyper-geometric function 

𝐹2  ∙  1  as  

 𝑃 𝐼 ≤ 𝐼𝑇 =  𝑝 𝐼 𝑑𝐼

𝐼𝑇

0

 (3.25) 

 =
𝜋

sin 𝜋 𝛼 − 𝛽  Γ 𝛼 Γ(𝛽)
  

 ×  
 𝛼𝛽𝐼𝑇 𝛽

𝛽Γ 𝛽 − 𝛼 + 1 
𝐹2 𝛽; 𝛽 + 1, 𝛽 − 𝛼 + 1; 𝛼𝛽𝐼𝑇 1    

 ×  
 𝛼𝛽𝐼0 𝛼

𝛼Γ 𝛼 − 𝛽 + 1 
𝐹2 𝛼; 𝛼 + 1, 𝛼 − 𝛽 + 1; 𝛼𝛽𝐼𝑇 1  ,  

with 𝐼𝑇  representing the irradiance threshold level. The presented gamma-gamma model 

expressions will be utilized to develop gamma-gamma model fade statistic expressions and 

compare the results with experiment data. 
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3.2 Level-Crossing Statistics of an Irradiance Signal 

3.2.1 Mean Level Crossing Rate  

It has been demonstrated that characterization of signal level crossings moments may be derived 

with knowledge of the derivative joint density functions. This is done by examining a functional 

representation of the 𝑗𝑡  ensemble realization of a random process 𝐼(𝑗 )(𝑡) at an arbitrary intensity 

level 𝐼𝑇  in the time interval (𝑡1, 𝑡2). Analysis will be limited to stationary random processes and 

each ensemble realization will be considered representative of the entire ensemble [46]. A 

counting function is introduced for crossings at the level 𝐼𝑇  via the following discussion [38, 39]. 

It is observed that the process 𝐼(𝑡) must be differentiable (mean square) to the first order, at least 

[38, 39]. 

We begin the analysis with having 𝑢(𝑡) represent the Heaviside step function defined by 

 
𝑢 𝑡 =  

0, 𝑡 < 0
1/2, 𝑡 = 0

1, 𝑡 > 0.

  (3.26) 

Then considering 𝑢 𝐼 𝑗   𝑡 − 𝐼𝑇 , and taking the derivative gives 

 𝑑𝑢

𝑑𝑡
= 𝐼  𝑗   𝑡  𝛿 𝐼 𝑗  (𝑡) − 𝐼𝑇 , (3.27) 

where 𝛿 𝐼 𝑗  (𝑡) − 𝐼𝑇  is the Dirac delta function. The Dirac delta function is commonly defined 

as 

 𝛿 𝑡 =  
∞, 𝑡 = 0
0, 𝑡 ≠ 0,

  (3.28) 

and also satisfies the identity 
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 𝛿 𝑡  𝑑𝑡

∞

−∞

= 1. (3.29) 

Due to the Dirac delta function, the expression in Equation (3.27) vanishes except if the 

irradiance 𝐼 𝑗  (𝑡) is equal to the threshold irradiance 𝐼𝑇 . When 𝐼 𝑗   𝑡 = 𝐼𝑇   a spike occurs (of 

unit area) directed positively or negatively depending on whether the sign of 𝐼  𝑗   𝑡  at 𝐼𝑇  is 

positive or negative. The desired counting functional for the 𝑗𝑡  member of the ensemble is then 

the number of crossings per second (at time 𝑡), and may be written [39] 

 𝑛(𝑗) 𝐼𝑇 , 𝐼 ; 𝑡 =  𝐼  𝑗   𝑡   𝛿 𝐼 𝑗  (𝑡) − 𝐼𝑇 −∞ < 𝐼 𝑗  < ∞ . (3.30) 

The total number of crossings in an interval 𝑡2 − 𝑡1 is written as the integral relationship 

 
𝑁(𝑗 ) 𝐼𝑇, 𝐼 ; 𝑡2 − 𝑡1 =  𝑛(𝑗 )

𝑡2

𝑡1

 𝐼𝑇, 𝐼 ; 𝜏 𝑑𝜏 =   𝐼 
 𝑗 

 𝜏   𝛿  𝐼
 𝑗 (𝜏) − 𝐼𝑇  𝑑𝜏

𝑡2

𝑡1

. (3.31) 

Setting 𝐼𝑇 =  𝐼  gives the expected number of mean irradiance-level crossings in the interval, 

however 𝐼𝑇  is left as an arbitrarily defined irradiance level. It is compared in ratio to the mean 

irradiance value in the experimental analysis. 

 

First and higher-order moments for 𝑛 𝐼𝑇 , 𝐼 ; 𝑡  and 𝑁 𝐼𝑇 , 𝐼 ; 𝑡2 − 𝑡1  can be obtained from 

Middleton‟s discussions [38, 39]. By assuming a stationary random process, we may simplify 

notation by dropping dependence on the 𝑗𝑡  member of the ensemble and consider each 

realization of the process to be equivalent. The mean number of level crossings is given to be 

 
𝑛 𝐼𝑇 , 𝐼 ; 𝑡             =   𝐼 (𝑡)  𝛿 𝐼 𝑡 − 𝐼𝑇 𝑝1(𝐼𝑇 , 𝐼 , 𝑡)

∞

−∞

𝑑𝑡 𝑑𝐼 , (3.32) 
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where 𝑝1(𝐼𝑇 , 𝐼 , 𝑡) is the joint density of the irradiance signal at the irradiance threshold level 𝐼𝑇  

and the derivative of irradiance 𝐼  at time 𝑡. Following through with the inside integration 

involving the time variable 𝑡, the expression in Equation (3.32) for the mean number of level 

crossings can be rewritten as 

 
𝑛 𝐼𝑇 , 𝐼 ; 𝑡             =   𝐼 (𝑡)  𝑝1(𝐼𝑇 , 𝐼 , 𝑡)

∞

−∞

𝑑𝐼 . 
(3.33) 

 

The dependence of the developed statistical parameters on time 𝑡 may be omitted if a stationary 

random process is considered [46]; this will be assumed to be true for the presented analysis in 

Section 4.4.2 Mean Number of Level Crossings of Experimental Data and Section 4.4.3 Mean 

Fade Time of Experimental Data. 

The expected number of irradiance signal fades  𝑛(𝐼𝑇 , 𝐼 ; 𝑡)  is then found to be one half of the 

expected number of irradiance threshold level crossings 𝑛 𝐼𝑇 , 𝐼 ; 𝑡             , explicitly stated as [13] 

 
 𝑛(𝐼𝑇 , 𝐼 ; 𝑡) =

1

2
  𝐼 (𝑡)  𝑝1(𝐼𝑇 , 𝐼 ; 𝑡)

∞

−∞

𝑑𝐼 =
1

2
𝑛 𝐼𝑇 , 𝐼 ; 𝑡             . (3.34) 

We note the subtle difference in notation between the expected number of irradiance signal fades 

and the expected number of threshold level crossings. Additionally, the dependence on the time 

variable 𝑡 may be dropped from notation if a stationary random process is assumed. 

 

For simplicity in notation, we will notate the level crossing statistics only as a function irradiance 

threshold level 

 
 𝑛 𝐼𝑇  ≡

1

2
𝑛(𝐼𝑇)       , (3.35) 
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with the time dependence considered inherent. 

3.2.2 Mean Square Level Crossing Rate 

Similar in statistical concept to the mean level crossing rate, the mean square level crossing rate 

shares some characteristics of the former. It is demonstrated that a simplified approach can be 

taken to obtain an estimate of the second moments of the level crossing distribution 𝑛2   , 𝑁2     from 

expressions 

 
𝑛2   =   𝐼 1   𝐼 2  𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2, 𝑡2 

∞

−∞

𝑑𝐼 1𝑑𝐼 2 , (3.36) 

where 𝑝2 𝐼𝑇 , 𝐼 1 , 𝑡1; 𝐼𝑇 , 𝐼 2 , 𝑡2  is the joint density of irradiance at threshold level 𝐼𝑇  and the 

derivative of the irradiance 𝐼  at two moments in time 𝑡1 and 𝑡2. From this, the expected number 

of level crossings within the time interval 𝑡 = 𝑡2 − 𝑡1 is 

 

𝑁2    =  𝑛2(𝐼𝑇 , 𝐼 1, 𝐼 2; 𝜏1 , 𝜏2)                       

𝑡2

𝑡1

𝑑𝜏1𝑑𝜏2 . (3.37) 

 

Once again, to clarify notation in Equation (3.36), the mean square irradiance threshold level 

crossing rate may be defined in terms expected value notation as 

  𝑛 𝐼𝑇 , 𝐼 1; 𝑡1 𝑛 𝐼𝑇 , 𝐼 2; 𝑡2  ≡ 𝑛2(𝐼𝑇 , 𝐼 1, 𝐼 2; 𝑡1, 𝑡2)                      , (3.38) 

where 𝑛 𝐼𝑇 , 𝐼 𝑛 ; 𝑡𝑛  represents the expected irradiance threshold level crossing rate at time 𝑡𝑛  as 

defined in Equation (3.33). As previously stated, the dependence on the time variable 𝑡 may be 

dropped from notation if a stationary random process is assumed. This assumption will be 
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prevalent in the proceeding analysis. We will then use the notation for the mean square 

irradiance threshold level crossing rate 

  𝑛 𝐼𝑇 𝑛 𝐼𝑇  ≡ 𝑛2(𝐼𝑇)        . (3.39) 

 

For this analysis, the approach to find a closed form expression (or rather, an approximation to 

one) for 𝑝2 𝐼𝑇 , 𝐼 1 , 𝑡1 𝐼𝑇 , 𝐼 2, 𝑡2  is as follows. Suppose the joint density at two moments in time 𝑡1 

and 𝑡2 is written in terms of the conditional density distribution as 

 𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2, 𝑡2 = 𝑝1 𝐼𝑇 , 𝐼 1, 𝑡1 𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1 𝐼𝑇 , 𝐼 2, 𝑡2 . (3.40) 

If considering two instances that largely separated in time, the conditional density distribution 

may written [39] 

 lim
𝑡2−𝑡1→∞

𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1 𝐼𝑇 , 𝐼 2, 𝑡2 = 𝑝1 𝐼𝑇 , 𝐼 2, 𝑡2 . (3.41) 

It is then inferred that 

 lim
𝑡2−𝑡1→∞

𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2, 𝑡2 = 𝑝1 𝐼𝑇 , 𝐼 1, 𝑡1 𝑝1 𝐼𝑇 , 𝐼 2, 𝑡2 . (3.42) 

Equation (3.41) states that there is no memory or statistical dependence of the random process 

observed at two different times sufficiently separated in time. It is also known that correlation 

will approach zero for any natural phenomena as time difference approaches a large value [40, 

46]. Generally the time correlations of irradiance fluctuations are not independent within 50 

millisecond timescales [4, 5, 7, 13]. However, it is reasonably that there would likely be no 

correlation on minute time scales. This approximation is deemed appropriate for this analysis as 

atmospheric parameters are generally considered to be stationary over long periods of time (on 

order of a half an hour) [4, 5]. As a side note, if one were to consider two points separated an 
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infinitesimal small distance in time then we would have lim𝑡2−𝑡1→0 𝑝2 𝐼𝑇 , 𝐼 1 , 𝑡1 𝐼𝑇 , 𝐼 2, 𝑡2 =

𝛿 𝐼2 − 𝐼1 . 

From this notion, the joint density of a finite set of 𝑛 independently distributed joint density 

functions can then be written as 

 
𝑝𝑛 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2, 𝑡2; … ; 𝐼𝑇 , 𝐼 𝑛, 𝑡𝑛 =  𝑝1(𝐼𝑇 , 𝐼 𝑛 , 𝑡𝑛 )

𝑛

𝑛 =1

. (3.43) 

Assuming the time 𝑡𝑛+1 occurs much later than the time 𝑡𝑛 , successive derivative joint density 

functions may be considered independently distributed [38, 39]. From this the sought joint 

density may be written as the multiplication of the derivative joint density function at two 

separate instances in time 

 𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2, 𝑡2 = 𝑝1 𝐼𝑇 , 𝐼 1, 𝑡1 𝑝1 𝐼𝑇 , 𝐼 2, 𝑡2 . (3.44) 

 

With expression (3.44) it is then possible to find the value of mean square irradiance threshold 

level crossing of the received irradiance signal from Equation (3.36). It is the joint density 

distribution of 𝐼 and  𝐼  that is needed at one or more instants (𝑡1, 𝑡2, … , 𝑡𝑚 ) for calculation of 𝑛𝑚     

and 𝑁𝑚     , where 𝑚 represents the order of the desired statistical level crossing moment. 

3.2.3 Fade Time Statistics 

The average time (in seconds) which the received irradiance signal 𝐼 stays below a specified 

irradiance level 𝐼𝑇  is found with knowledge of the expected number of fades  𝑛(𝐼𝑇)  and the 

probability of fade Pr 𝐼 ≤ 𝐼𝑇 . Probability of fade was previously defined in Section 2.5 Optical 

Communication System Model as 
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Pr 𝐼 ≤ 𝐼𝑇 =  𝑝 𝐼 𝑑𝐼

𝐼𝑇

0

, (3.45) 

where 𝑝(𝐼) is the probability density of irradiance 𝐼. 

 

With expressions for probability of fade and expected number of fades, the expected fade time is 

the ratio of these two calculations. Explicitly stated as [10, 11, 13] 

 
 𝑡(𝐼𝑇) =

Pr 𝐼 ≤ 𝐼𝑇 

 𝑛(𝐼𝑇) 
, (3.46) 

where Pr 𝐼 ≤ 𝐼𝑇  represents the probability that the irradiance 𝐼(𝑡) falls below the irradiance 

threshold level 𝐼𝑇  and  𝑛(𝐼𝑇)  is the expected number of fades per second. 

 

Higher order moments such as the mean square fade time  𝑡2(𝐼𝑇)  (units of seconds squared) of 

irradiance signal 𝐼(𝑡) below the irradiance threshold level 𝐼𝑇  may be concurrently developed by 

Equation (3.46). To find the mean square fade time, we consider taking the square root of second 

moment of level crossings  𝑛2(𝐼𝑇)  to proceed with the analysis and maintain consistent units. 

From here, we proceed as with mean fade time 

 
  𝑡2(𝐼𝑇) =

Pr 𝐼 ≤ 𝐼𝑇 

  𝑛2(𝐼𝑇) 
, (3.47) 

and we must square the result shown in Equation (3.47) to reach the desired expression for mean 

square fade time  𝑡2(𝐼𝑇) . Similarly, higher order moments can be obtained through use of this 

method as units will maintain the desired consistency. For this analysis, the probability of fade 

Pr 𝐼 ≤ 𝐼𝑇  will be computed numerically through experimental data by the cumulative 

distribution function (CDF). This will allow numerical data to maintain tractable in the analysis. 
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With the expressions for mean fade time and mean square fade time, variance of fade time and 

standard deviation of fade time may then be readily found. As with regular statistical moments, 

the variance in fade time may be expressed in terms of the mean fade time  𝑡 𝐼𝑇   and mean 

square fade time  𝑡2(𝐼𝑇)  as 

 𝑉𝐴𝑅 𝑡 𝐼𝑇  =  𝑡2(𝐼𝑇) −  𝑡 𝐼𝑇  2, (3.48) 

and this again has units of seconds to the square power. In addition, the standard deviation in 

fade time may be found by taking the square root of Equation (3.48) and readily stated 

 𝑆𝑡𝐷𝐸𝑉 𝑡 𝐼𝑇  =  𝑉𝐴𝑅 𝑡 𝐼𝑇   1/2. (3.49) 

Standard deviation of fade time has the same units as the average value, seconds.  

3.3 Joint Density of a Random Variable and its Temporal Derivative 

Calculation of the expressions presented in Section 3.2 Level-Crossing Statistics of an Irradiance 

Signal requires formulation of joint density functions involving the irradiance and the derivative 

of irradiance term. The joint PDF of the irradiance and its time derivative for any irradiance 

distribution may be written as [7, 12, 13, 39, 42] 

 𝑝1 𝐼, 𝐼 , 𝑡 = 𝑝
𝐼
 𝐼 𝑝

𝐼 
 𝐼 |𝐼 , (3.50) 

where 

  𝐼  =
𝑑𝐼(𝑡)

𝑑𝑡
 
𝑡
. (3.51) 

This concept stems from the elementary probability density function relationships, however the 

proceeding analysis of a joint derivative process is much more difficult when non-Gaussian 

distributed random variables are considered [39]. This is due primarily to the temporal derivative 

joint density function 𝑝𝐼  𝐼 |𝐼  in Equation (3.50). Section 3.3.1 demonstrates that finding an 

appropriate method to model the joint density of an irradiance signal and its temporal derivative 
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signal will require approximation. The joint PDF of irradiance 𝐼 and the time derivative of the 

irradiance 𝐼  at a multiple moments in time (𝑡1 , 𝑡2 , … , 𝑡𝑛 ) will be defined in the proceeding 

sections as 𝑝𝑛 𝐼, 𝐼 1 , 𝑡1; 𝐼, 𝐼 2, 𝑡2; … ; 𝐼, 𝐼 𝑛 , 𝑡𝑛  to compact notation. 

3.3.1 Joint Density of Gamma-Gamma Irradiance and Temporal Derivative 

No closed form expression exists for the joint PDF of a gamma-gamma distributed irradiance 

and its time derivative [13]. However, the joint PDF can be expressed as the product of the 

gamma-gamma PDF and the conditional PDF of the time derivative. The functional form of the 

conditional PDF for 𝐼  is not exactly Gaussian, although it has been argued that it will reduce to a 

zero-mean Gaussian PDF if either 𝛼 → ∞ or 𝛽 → ∞ (when the gamma-gamma PDF reduces to a 

gamma PDF) [13]. If this approximation is chosen, the conditional PDF of 𝐼  with respect to 𝐼 is a 

zero-mean Gaussian distribution with an irradiance depending variance equal to 4𝑏2𝐼2 and can 

be written as 

 
𝑝1 𝐼, 𝐼 , 𝑡 =

1

 8𝜋𝐼𝑏2
exp  −

𝐼 
2

8𝐼𝑏2
 , (3.52) 

where 𝑏2 is the variance of the time derivative of a stationary Gaussian random process [13]. It is 

again useful to mention that the joint PDF of irradiance and the time derivative of irradiance at a 

moment in time 𝑡 will be utilized in the proceeding sections as 𝑝1 𝐼, 𝐼 , 𝑡  to simplify notation. 

 

As a side note a closed form expression for the joint density of a gamma distributed random 

variable and its time derivative process has been found to be [13] 

 
𝑝

1
 𝐼, 𝐼 , 𝑡 =

1

 8𝜋𝑏2
 

𝛼𝛼

Γ(𝛼)
𝐼𝛼−3/2 𝑒−𝛼𝑥  exp  −

𝐼 2

8𝑏2𝐼
 , 𝐼 > 0. (3.53) 
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Equation (3.53) is written here only for mathematical interest and will not be utilized in this 

analysis. Instead, the focus will be on the gamma-gamma result presented beforehand. 

3.4 Gamma-Gamma Distributed Irradiance Fading 

The following sections will analyze the statistics of gamma-gamma distributed irradiance fade 

time. Our analysis will be mostly focused on mean and variance in fade time of an irradiance 

signal whose wave front has been distorted by atmospheric turbulence. The gamma-gamma 

model parameters will be utilized in order to relate model parameters to physically measureable 

parameters. 

3.4.1 Mean Level Crossing Rate of Gamma-Gamma Distributed Irradiance 

It has been previously found that the joint PDF of a gamma-gamma distributed irradiance and its 

time derivative is 

 
𝑝1 𝐼𝑇 , 𝐼 , 𝑡 =

1

 8𝜋

𝛼𝛼𝛽𝛽

Γ 𝛼 Γ 𝛽 
𝐼𝑇
𝛽−3/2  

𝑤𝛼−𝛽−1/2

 𝑏𝑥
2𝐼𝑇 + 𝑏𝑦

2𝑤2

∞

0

exp  −𝛼𝑤 −
𝛽𝐼𝑇
𝑤

−
𝐼 2𝑤

8𝐼𝑇 𝑏𝑥
2𝐼𝑇 + 𝑏𝑦

2𝑤2 
 𝑑𝑤. 

(3.54) 

Inserting Equation (3.54) into Equation (3.34) yields the expression for the expected number of 

irradiance threshold crossings as 

 
 𝑛 𝐼𝑇  =

1

2

1

 8𝜋

𝛼𝛼𝛽𝛽

Γ 𝛼 Γ 𝛽 
𝐼𝑇
𝛽−

3
2  

𝑤𝛼−𝛽−
1
2

 𝑏𝑥
2𝐼𝑇 + 𝑏𝑦

2𝑤2

∞

0

× 

exp  −𝛼𝑤 −
𝛽𝐼𝑇
𝑤

   𝐼 (𝑡) exp  −
𝐼 2𝑤

8𝐼𝑇 𝑏𝑥
2𝐼𝑇 + 𝑏𝑦

2𝑤2 
 

∞

−∞

𝑑𝐼  𝑑𝑤. 

(3.55) 

The integral over 𝐼  in Equation (3.55) has been found to be [10] 
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  𝐼 (𝑡) 

∞

−∞

exp  −
𝐼 2𝑤

8𝐼𝑇 𝑏𝑥
2𝐼𝑇 + 𝑏𝑦

2𝑤2 
 𝑑𝐼 =

8𝐼𝑇 𝑏𝑥
2𝐼𝑇 + 𝑏𝑦

2𝑤2 

𝑤
, 

(3.56) 

and the expected number of fades can then be written as 

 

 𝑛(𝐼𝑇) =  
2𝐼𝑇
𝜋

𝛼𝛼𝛽𝛽

Γ 𝛼 Γ 𝛽 
𝐼𝑇
𝛽−1  𝑤𝛼−𝛽−3/2 𝑏𝑥

2𝐼𝑇 + 𝑏𝑦
2𝑤2 exp  −𝛼𝑤

∞

0

−
𝛽𝐼𝑇
𝑤

  𝑑𝑤, 

(3.57) 

where 𝑏𝑥
2 and 𝑏𝑦

2 are respectively the large-scale and the small-scale variance of the time 

derivative of a stationary Gaussian random process. This integral has no known solutions; an 

approximation will therefore be made to facilitate the mathematical analysis. Define the expected 

number of fades by the relationship 

 

 𝑛(𝐼𝑇) =  
2𝐼𝑇
𝜋

𝛼𝛼𝛽𝛽

Γ 𝛼 Γ 𝛽 
𝐼𝑇
𝛽−1

𝐴 𝛼, 𝛽, 𝐼𝑇 , (3.58) 

where 

 
𝐴 𝛼, 𝛽, 𝐼𝑇 =  𝑤𝛼−𝛽−3/2 𝑏𝑥

2𝐼𝑇 + 𝑏𝑦
2𝑤2 exp  −𝛼𝑤 −

𝛽𝐼𝑇

𝑤
 

∞

0

 𝑑𝑤. 
(3.59) 

Developing approximations to this integral is essential as it is a somewhat difficult, if not 

completely impossible, integration to solve in closed form. Approximations have been developed 

for evaluating this integration [10]. As outlined in APPENDIX A 

INTEGRAL APPROXIMATION OF GAMMA-GAMMA MEAN FADE TIME
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 the asymptotic approximation is given as [10] 

 
𝐴 𝛼, 𝛽, 𝐼𝑇 𝐴𝑝𝑝𝑟𝑜𝑥 1 = 𝑏  𝑤𝛼−𝛽−1/2 exp  −𝛼𝑤 −

𝛽𝐼𝑇
𝑤

 
∞

0

 𝑑𝑤 
(3.60) 

 

= 2𝑏  
𝛽𝐼𝑇
𝛼

 

𝛼−𝛽
2

+
1
4

𝐾𝛼−𝛽+1/2 2 𝛼𝛽𝐼𝑇 .  

 

The expected number of fades for gamma-gamma distributed irradiance signal is obtained by 

insertion of Equation. (3.60) into Equation (3.58), leading to the result 

  𝑛 𝐼𝑇  𝐴𝑝𝑝𝑟𝑜𝑥 1 = 2𝑏 
2

𝜋𝛼𝛽𝐼𝑇

 𝛼𝛽𝐼𝑇 
𝛼−𝛽

2
+

1
4

Γ 𝛼 Γ 𝛽 
𝐾𝛼−𝛽+1/2 2 𝛼𝛽𝐼𝑇 . (3.61) 

 

We introduce the quasi frequency 𝜈0 to describe the temporal bandwidth of the fade distribution, 

defined with units of Hertz as 

 𝜈0 =
𝑏

𝜋𝜍ln 𝐼
, 

(3.62) 

where 𝑏 is the standard deviation of the time derivative Gaussian random process and 𝜍ln 𝐼 is the 

square root of the log irradiance scintillation index. With use of Equation (3.62) the first 

approximation is then given to be [10] 

  𝑛 𝐼𝑇  𝐴𝑝𝑝𝑟𝑜𝑥 1 =
2𝜈0𝜍ln 𝐼 2𝜋𝛼𝛽

Γ 𝛼 Γ 𝛽 
 𝛼𝛽𝐼𝑇 

𝛼−𝛽
2

 − 
1
4 𝐾𝛼−𝛽+1/2 2 𝛼𝛽𝐼𝑇 . (3.63) 

 

A second expression is presented in literature as (with unity normalized irradiance  𝐼 = 1 ) [13] 

 
 𝑛 𝐼𝑇  𝐴𝑝𝑝𝑟𝑜𝑥 2 =

2 2𝜋𝛼𝛽𝜈0𝜍𝐼

Γ 𝛼 Γ 𝛽 
 𝛼𝛽𝐼𝑇 

𝛼+𝛽−1
2 𝐾𝛼−𝛽  2 𝛼𝛽𝐼𝑇 . (3.64) 
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For this analysis, the second approximation for the expected number of fades shown in Equation 

(3.64) will be utilized in data comparison as it is the most widely known of the two presented 

gamma-gamma model approaches within the published literature [13]. 

 

It is useful to redefine the level crossing parameter 𝐼𝑇  by an alternative expression, 

 
𝐹𝑇 = 10 log  

 𝐼 

𝐼𝑇
 . 

(3.65) 

This parameter may be approximated by the expression 

 𝐼𝑇 ≈ exp −0.23𝐹𝑇 , 
(3.66) 

where 𝐹𝑇 is hereby referred to as the fade threshold parameter [7, 10, 13]. With the redefinition 

in Equation (3.66), the expected number of fades may then be written in terms of the fade 

threshold parameter as 

 
 𝑛 𝐹𝑇  =

2𝜈0𝜍ln 𝐼 2𝜋𝛼𝛽

Γ 𝛼 Γ(𝛽)
 𝛼𝛽 exp −0.23𝐹𝑇  

 𝛼+𝛽−1 
2  (3.67) 

 × 𝐾𝛼−𝛽  2 𝛼𝛽 exp −0.23𝐹𝑇  .  

Equation (3.67) is utilized in Section 4.4.2 Mean Number of Level Crossings of Experimental 

Data to compare with experimental data. Additionally, Equation (3.67) is used to compute 

standard deviation in irradiance signal fade time in Section 4.4.5 Standard Deviation of Fade 

Time of Experimental Data. 
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3.4.2 Mean Square Level Crossing Rate of Gamma-Gamma Distributed 

Irradiance 

The major focus of this analysis is the variance in fade time below an arbitrarily specified 

irradiance threshold 𝐼𝑇 . In order to obtain the variance and standard deviation in fade time, the 

mean square number of level crossings must be determined in addition to the mean number of 

level crossings. The mean squared number of level crossings for the time irradiance signal 𝐼(𝑡) is 

found by the expression given in Equation (3.36) 

 
𝑛0

2   =   𝐼 1   𝐼 2  𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2, 𝑡2 

∞

−∞

𝑑𝐼 1𝑑𝐼 2 , 
(3.68) 

where 𝐼𝑇  is the irradiance crossing threshold, 𝐼 𝑛 is the time derivative of the irradiance signal at 

the 𝑛𝑡  moment in time (𝑡𝑛 ), and 𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2, 𝑡2  is the joint density of the irradiance and 

the time derivative of irradiance at two separate instances in time, 𝑡1 and 𝑡2. From the 

discussions of Middleton, the expression 𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2 , 𝑡2  can be written in terms of the 

conditional density distribution as [39] 

 
𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2, 𝑡2 = 𝑝1 𝐼𝑇 , 𝐼 1, 𝑡1 𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1 𝐼𝑇 , 𝐼 2, 𝑡2 . (3.69) 

In consideration of two instances in time, 𝑡1 and 𝑡2 , we examine an assumption presented by 

Middleton. If the instances are separated by a sufficiently large amount of time (such that the 

cross-wind speed 𝑣⊥  and path length 𝐿 satisfy 𝑡2 − 𝑡1 ≫
𝑣⊥

𝐿
), the conditional density distribution 

can be written as [4, 5, 7, 39] 

 
lim𝑡2−𝑡1→∞ 𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2, 𝑡2 = 𝑝1 𝐼𝑇 , 𝐼 1, 𝑡1 𝑝1 𝐼𝑇 , 𝐼 2, 𝑡2 .  (3.70) 

It is postulated that since atmospheric conditions represent a process which remains stationary 

for a time period long enough for Equation (3.71) to be valid, the joint density of the irradiance 
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and the time derivative of the irradiance at two moments separated by a large amount of time can 

be expressed as 

 
𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2, 𝑡2 = 𝑝1 𝐼𝑇 , 𝐼 1, 𝑡1 𝑝1 𝐼𝑇 , 𝐼 2, 𝑡2 . (3.71) 

We will hold that this approach presents an approximation to the actual random process of study; 

it is documented in literature that the atmosphere presents itself as stationary about half hour 

increments [4, 5]. Therefore it is appropriate to use the notation 

 
𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2, 𝑡2 ≅ 𝑝1 𝐼𝑇 , 𝐼 1, 𝑡1 𝑝1 𝐼𝑇 , 𝐼 2, 𝑡2 . (3.72) 

An approximation for the probability density function of a gamma-gamma distributed irradiance 

at level 𝐼𝑇  and its time derivative 𝐼 𝑛 , at a moment in time 𝑡𝑛 , is given in Section 3.3 Joint Density 

of a Random Variable and its Temporal Derivative to be  

 

𝑝1 𝐼𝑇 , 𝐼 𝑛, 𝑡𝑛 ≅
2 𝛼𝛽 

𝛼+𝛽
2

Γ 𝛼 Γ 𝛽 𝐼𝑇
 
𝐼𝑇
 𝐼 

 

𝛼+𝛽
2

𝐾𝛼−𝛽  2 
𝛼𝛽𝐼𝑇
 𝐼 

 

×
1

2 2𝜋𝑏𝐼𝑇
exp  −

𝐼 𝑛
2

8𝑏𝐼𝑇
 , 

(3.73) 

where 𝛼 and 𝛽 are the gamma-gamma PDF parameters (related directly to the scintillation 

index 𝜍𝐼
2), and 𝑏 is the derivative process contributed parameter (a parameter that may be 

redefined in terms of the quasi frequency 𝜈0 and scintillation index 𝜍𝐼
2) [13]. The expression 

for 𝑏 is given in terms of the quasifrequency as [13] 

 

𝜈0 =
1

𝜋𝜍𝐼

 
𝑏

 𝐼 
, (3.74) 

and this then can be rearranged to find 



48 

 

 𝑏 =  𝐼  𝜈0𝜋𝜍𝐼 
2 . (3.75) 

 

The expression for the joint density of a gamma-gamma distributed irradiance and its derivative, 

at two moments separated sufficiently in time, may be estimated as 

 𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2, 𝑡2 ≅ 𝑝1 𝐼𝑇 , 𝐼 1, 𝑡1 𝑝1 𝐼𝑇 , 𝐼 2, 𝑡2  
(3.76) 

 

≅  
2 𝛼𝛽 

𝛼+𝛽
2

Γ 𝛼 Γ 𝛽 𝐼𝑇
 
𝐼𝑇
 𝐼 

 

𝛼+𝛽
2

𝐾𝛼−𝛽  2 
𝛼𝛽𝐼𝑇
 𝐼 

 ×
1

2 2𝜋𝑏𝐼𝑇
exp  −

𝐼 1
2

8𝑏𝐼𝑇
    

 

×  
2 𝛼𝛽 

𝛼+𝛽
2

Γ 𝛼 Γ 𝛽 𝐼𝑇
 
𝐼𝑇
 𝐼 

 

𝛼+𝛽
2

𝐾𝛼−𝛽  2 
𝛼𝛽𝐼𝑇
 𝐼 

 ×
1

2 2𝜋𝑏𝐼𝑇
exp  −

𝐼 2
2

8𝑏𝐼𝑇
    

 

≅
1

2𝜋𝑏𝐼𝑇
 
𝛼𝛽𝐼𝑇
 𝐼 

 
𝛼+𝛽

 
 
 
 
 𝐾𝛼−𝛽  2 

𝛼𝛽𝐼𝑇
 𝐼 

 

Γ 𝛼 Γ 𝛽 𝐼𝑇

 
 
 
 
 

2

exp  −
𝐼 1

2 + 𝐼 2
2

8𝑏𝐼𝑇
   

where 𝐼𝑇  is the normalized threshold irradiance, 𝐼 1 and 𝐼 2 are the derivative of the normalized 

irradiance at times 𝑡1 and 𝑡2, 𝛼 and 𝛽 are the effective number of large scale and small scale 

scatterers, 𝑏 is the standard deviations of the time derivative of a Gaussian random process 

associated with the large scale and small scale irradiances. By inserting Equation (3.76) into 

Equation (3.68) it is found that the mean square number of crossings for a gamma-gamma 

distributed irradiance becomes approximately 

 
𝑛2   =   𝐼 1   𝐼 2  𝑝2 𝐼𝑇 , 𝐼 1, 𝑡1; 𝐼𝑇 , 𝐼 2, 𝑡2 

∞

−∞

𝑑𝐼 1𝑑𝐼 2 
(3.77) 
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≅   𝐼 1   𝐼 2  
1

2𝜋𝑏𝐼𝑇
 
𝛼𝛽𝐼𝑇
 𝐼 

 
𝛼+𝛽

 
 
 
 
 𝐾𝛼−𝛽  2 

𝛼𝛽𝐼𝑇
 𝐼 

 

Γ 𝛼 Γ 𝛽 𝐼𝑇

 
 
 
 
 

2

exp  −
𝐼 1

2 + 𝐼 2
2

8𝑏𝐼𝑇
 

∞

−∞

𝑑𝐼 1𝑑𝐼 2   

The integrations involving the derivative irradiance are recognized such that one is able to 

rearrange the expressions in Equation (3.77) as  

 

𝑛2   ≅  
1

2𝜋𝑏𝐼𝑇
 
𝛼𝛽𝐼𝑇
 𝐼 

 
𝛼+𝛽

 
 
 
 
 𝐾𝛼−𝛽  2 

𝛼𝛽𝐼𝑇
 𝐼 

 

Γ 𝛼 Γ 𝛽 𝐼𝑇

 
 
 
 
 

2

 (3.78) 

 
×   𝐼 1 exp  −

𝐼 1
2

8𝑏𝐼𝑇
 𝑑𝐼 1

∞

−∞

  

 
×   𝐼 2 exp  −

𝐼 2
2

8𝑏𝐼𝑇
 𝑑𝐼 2

∞

−∞

.  

The sought integrations of Equation (3.78) are identical and may written in terms of the 

improvised function 

 
𝑀𝐼 𝑏, 𝐼𝑇 =   𝐼 𝑛   exp  −

𝐼 𝑛
2

8𝑏𝐼𝑇
 𝑑𝐼 𝑛

∞

−∞

, 
(3.79) 

where 𝐼 𝑛  denotes the derivative with respect to the 𝑛𝑡  moment in time 𝑡𝑛 .The mean square 

number of crossings is then found to be 

 

𝑛2   ≅  
1

2𝜋𝑏𝐼𝑇
 
𝛼𝛽𝐼𝑇
 𝐼 

 
𝛼+𝛽

 
 
 
 
 𝑀𝐼 𝑏, 𝐼𝑇  𝐾𝛼−𝛽  2 

𝛼𝛽𝐼𝑇
 𝐼 

 

Γ 𝛼 Γ 𝛽 𝐼𝑇

 
 
 
 
 

2

 (3.80) 
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It is recognized that the integral 𝑀𝐼 𝑏, 𝐼𝑇  involving the derivative terms, 𝐼 1 and 𝐼 2, is tractable 

with the elementary integral relation 

 
  𝛾 𝑒−𝛾2

𝑑𝛾
∞

−∞

= 1, 
(3.81) 

where 𝛾 is a dummy variable of integration. From Equation (3.79) it is identified that one should 

make use of the substitution 

 
𝛾2 =

𝐼 𝑛
2

8𝑏𝐼𝑇
, 

(3.82) 

then, assuming the positive root of 

 
±𝛾 = 𝐼 𝑛 

1

8𝑏𝐼𝑇
, 

(3.83) 

 

it is found that 

 
𝑑𝛾 = 𝑑𝐼 𝑛 

1

8𝑏𝐼𝑇
. 

(3.84) 

From this, the integration can be evaluated as 

 
𝑀𝐼 𝑏, 𝐼𝑇 =  8𝑏𝐼𝑇   𝛾  𝑒−𝛾2

𝑑𝛾
∞

−∞

, 
(3.85) 

 =  8𝑏𝐼𝑇 .  

With substitution of the relationship from Equation (3.85) into Equation (3.80), the mean square 

number of level crossings becomes 
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𝑛2   ≅  
1

2𝜋𝑏𝐼𝑇
 
𝛼𝛽𝐼𝑇
 𝐼 

 
𝛼+𝛽

 
 
 
 
 𝑀𝐼 𝑏, 𝐼𝑇  𝐾𝛼−𝛽  2 

𝛼𝛽𝐼𝑇
 𝐼 

 

Γ 𝛼 Γ 𝛽 𝐼𝑇

 
 
 
 
 

2

 (3.86) 

 

≅  
1

2𝜋𝑏𝐼𝑇
 
𝛼𝛽𝐼𝑇
 𝐼 

 
𝛼+𝛽

 
 
 
 
  8𝑏𝐼𝑇  𝐾𝛼−𝛽  2 

𝛼𝛽𝐼𝑇
 𝐼 

 

Γ 𝛼 Γ 𝛽 𝐼𝑇

 
 
 
 
 

2

  

 

≅
4

𝜋
 
𝛼𝛽𝐼𝑇
 𝐼 

 
𝛼+𝛽

 
 
 
 
  𝐾𝛼−𝛽  2 

𝛼𝛽𝐼𝑇
 𝐼 

 

Γ 𝛼 Γ 𝛽 𝐼𝑇

 
 
 
 
 

2

.  

The approximate expression for the mean square number of level crossings can then be written 

as 

 

𝑛2   ≅  
4

𝜋
 
𝛼𝛽𝐼𝑇
 𝐼 

 
𝛼+𝛽

 
 
 
 
  𝐾𝛼−𝛽  2 

𝛼𝛽𝐼𝑇
 𝐼 

 

Γ 𝛼 Γ 𝛽 𝐼𝑇

 
 
 
 
 

2

. (3.87) 

Equation (3.87) is the derived expression with which experimental data is used to validate in 

Section 4.4.4 Mean Square Number of Level Crossings of Experimental Data. 

3.4.3 Gamma-Gamma Fade Time Statistics 

The average time (in seconds) which the gamma-gamma distributed irradiance signal 𝐼(𝑡) stays 

below a specified irradiance level 𝐼𝑇  is found with knowledge of the expected number of fades 

and the probability of fade. As presented in Section 3.2.3, the expected fade time is the ratio [13] 

 
 𝑡(𝐼𝑇) =

Pr 𝐼 ≤ 𝐼𝑇 

 𝑛(𝐼𝑇) 
, (3.88) 
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with Pr 𝐼 ≤ 𝐼𝑇  representing the probability that the irradiance 𝐼(𝑡) falls below the irradiance 

threshold level 𝐼𝑇  and  𝑛(𝐼𝑇)  being the expected number of fades per second. 

 

Higher order moments such as the mean square fade time  𝑡2(𝐼𝑇)  (units of seconds squared) of 

irradiance signal 𝐼(𝑡) below the irradiance threshold level 𝐼𝑇  may be concurrently developed by 

Equation (3.46). To find the mean square fade time, we consider taking the square root of second 

moment of level crossings  𝑛2(𝐼𝑇)  to proceed with the analysis and maintain consistent units. 

From here, we proceed as with mean fade time 

 
  𝑡2(𝐼𝑇) =

Pr 𝐼 ≤ 𝐼𝑇 

  𝑛2(𝐼𝑇) 
, (3.89) 

we must square the result obtained in Equation (3.47) to reach the desired expression for mean 

square fade time  𝑡2(𝐼𝑇) . Similarly, higher order moments may be obtained through use of this 

method as units will maintain the desired consistency. For this analysis, the probability of fade 

Pr 𝐼 ≤ 𝐼𝑇  will be computed numerically through experimental data by the cumulative 

distribution function (CDF). This will allow numerical data to maintain a tractable analysis.  

 

With the expressions for mean fade time and mean square fade time, variance of fade time and 

standard deviation of fade time may then be readily found. As with regular statistical moments, 

the variance in fade time may be expressed in terms of the mean fade time  𝑡 𝐼𝑇   and mean 

square fade time  𝑡2(𝐼𝑇)  as 

 𝑉𝐴𝑅 𝑡 𝐼𝑇  =  𝑡2(𝐼𝑇) −  𝑡 𝐼𝑇  2, (3.90) 
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this has units of seconds to the square power. In addition, the standard deviation in fade time 

may be found by taking the square root of Equation (3.48) and readily stated 

 𝑆𝑡𝐷𝐸𝑉 𝑡 𝐼𝑇  =  𝑉𝐴𝑅 𝑡 𝐼𝑇   1/2. (3.91) 

Standard deviation of fade time has the same units as the average value, seconds.  
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4. EXPERIMENTATION 

The purpose of this section is to detail the experimental data instrumentation, its setup, and the 

processing of collected data. 

4.1 Overview of Measurements and Data Processing 

532nm laser irradiance data were collected over a path length of 980 meters at the Innovative 

Science and Technology Experimentation Facility (ISTEF) located within the Kennedy Space 

Center at Cape Canaveral, Florida. Irradiance data were collected in moderate-to-strong 

turbulence conditions with different sized aperture over a fixed duration of 2 minutes each. 

Before each collection of laser signal data, background data were collected over a fixed duration 

of 20 seconds. The collected data were analyzed for stationarity and defects. Valid data were 

processed after the experimentation had completed in the MATLAB programming environment 

with 64-bit Windows and 64-bit Linux computer architectures. PDF of the irradiance data were 

computed and compared with lognormal, gamma, and gamma-gamma PDF models to allow 

execute comparison. Gamma-gamma model comparisons will be the main presentation of this 

analysis as it mirrors the theory that is presented in the previous sections. 

4.1.1 Innovative Science and Experimentation Facility (ISTEF) 

The Innovative Science and Experimentation Facility (ISTEF) is located within the Kennedy 

Space Center (KSC) at Cape Canaveral, Florida. The facility has a 1km laser range, a path that 

predominately consists of light vegetation with a row of groomed trees on each side. A 

photograph of the facility is shown in Figure 9. 
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Figure 9: The Innovative Science and Experimentation Facility (ISTEF) 

 

In addition, a photograph illustrating a typical experimental setup for the SLS-20 and BLS-900 

scintillometers 1km down range from the ISTEF main facility is shown in Figure 10. Vegetation 

is maintained regularly to prevent shrub blockage during laser experimentation and shrubbery 

extends to a height of roughly on each side of the range. The laser range is approximately level 

in elevation; however it has been observed by the author to not be completely flat for the entire 

1km path length. 
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Figure 10: Equipment setup at ISTEF 

 

4.1.2 Measured Macrometeorological Atmospheric Parameters 

The ISTEF range was instrumented with several weather instruments. Instrumentation included 

two Scintec SLS-20 scintillometers, one Scintec BLS-900 scintillometer, and three Applied 

Technologies three-axis sonic anemometers [47-49]. Scintillometer measurements provided real 

time values of the refractive index structure constant 𝐶𝑛
2 and the inner scale 𝑙0 at a rate of one 

measurement per minute (~.0167 Hz). Sonic anemometers provided three-dimensional wind 

speed measurements, as well as temperature data, at a rate of 10Hz. The values were measured 

for comparison with theoretical models. Knowledge of path averaged channel conditions 𝐶𝑛
2 

and 𝑙0 may be utilized to predict additional models used to study FSO communication systems. 
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The gamma-gamma model parameters representing the large-scale scatterers 𝛼 and small-scale 

scatterers 𝛽 can be calculated from 𝐶𝑛
2, 𝑙0, and 𝐿0 (see APPENDIX B 

RELATION OF GAMMA-GAMMA MODEL PARAMETERS TO MEASURED 

PARAMETERS
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). Another such parameter that may be inferred from measurements of 𝐶𝑛
2 , 𝑙0, and 𝐿0 is the 

spherical wave spatial coherence length 𝜌𝑠𝑝 . The expression for this parameter is given in 

Section 2.4 Aperture Averaging as 

 𝜌𝑠𝑝 =  0.55𝐶𝑛
2𝑘2𝐿 −3/5 , 𝑙0 ≪ 𝜌𝑠𝑝 ≪ 𝐿0 , (4.1) 

where 𝑘 is the wave number, 𝐿 is the path length, and it is assumed that 𝐿0 = ∞ [7]. This number 

generally describes the amount of atmospheric turbulence induced by the channel in account of 

the refractive-index structure constant and the inner-scale, but with outer-scale dependence 

neglected. When the aperture diameter exceeds the spatial coherence length by three times or 

more, aperture averaging effects are said to then be present. 

4.2 Transmitter Experimental Set-Up 

For these experiments, a continuous-wave 532nm diode-pumped solid state laser with a 

maximum output power of approximately 800mW was utilized. The transmitter system was 

setup on an optical bench within the ISTEF laboratory, and aimed downrange through an open 

window such that the receiver imaged an unobstructed laser signal. As the DPSS laser was 

operated at maximum power levels, the output mode structure evolved from fundamental to 

a TEM20 mode. To remove undesired spatial modes, a spatial filter of about 1mm was positioned 

at the center of the beam. The center portion of the beam was then passed through a defocused 

beam expander in effort to obtain an approximately spherical wave front at the receiver. The 

output divergence was tuned such that the spot radius at the receiver was measured with an 

imaging system to be about 2 meters (indicating a full-angle divergence of approximately 4mrad) 

[50]. To find an indication that a spherical wave would be obtained at the receiver, it is necessary 

to use the refractive beam parameter given in literature as 
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Λ0 =

2𝑧

𝑘𝑊0
2 (4.2) 

where 𝑧 is the path length, 𝑘 is the wave number, and 𝑊0 is the beam spot radius [7, 50, 51]. The 

refractive beam parameter Λ0 was calculated at the receiver to be a value of approximately ~75, 

implying that the receiver was in the far-field (signifying an approximately spherical wave at the 

receiver) [7]. 

 

Figure 11: Experimentation overview, transmitter and receiver set-up. 

 

4.3 Receiver Experimental Set-Up 

The receiving telescope was previously utilized in experiments under the Optical RF 

Communications Adjunct (ORCA) project funded by the Defense Advanced Research Projects 

Agency (DARPA). The telescope had been configured as a pupil plane imaging system. The 

primary lens was a 6 inch diameter refracting lens. A relay lens was positioned in the focal plane 

of the primary lens in order to project an image of the pupil plane onto the detector array. The 

New Focus 2101 power meter was utilized as the detector in this experiment for its high dynamic 

range, roughly 70dB, and its high sampling frequency 25kHz [18]. The detector surface is 5mm 

diameter silicon photodiode, which due to its large area, allowed for an easier alignment in the 
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focal place of the relay lens. The relay lens had a magnification such that a 2mm image of the 

pupil plane was created at the focal distance. Also, this relay lens is the aperture stop of the 

optical system and therefore defines the field of view. This system gives the advantage of 

minimal dependence on the focus of the receiving telescope, as the telescope can change focus 

and there will be a minimal effect on the amount of light received by the detector. Setup of lens 

and telescope are shown in Figure 12. 

 

Figure 12: Experiment aperture, lens, and detector setup. 

 

Power meter data were recorded on computer hardware with the use of a National Instruments 

NI9234 digitizer, utilizing a National Instruments NI ENET 9163 Ethernet carrier. The digitizer 

was operated at 51.5kS/s and it has a 24-bit resolution [52]. This combination transformed the 

power meter voltage output into a 24-bit digitized signal that was received over Ethernet by a 

computer utilizing the National Instruments LabVIEW Signal Express software. 



61 

 

4.4 Experimental Data Analysis 

This section outlines the results of the data collected during experimentation, and details a 

comparison with the theoretical models introduced by the previous sections. The presented data 

were collected from about 13:00EST to 16:30EST on October 2
nd

, 2009 at the ISTEF laser range 

located within the Kennedy Space Center.  The data were hastily recorded such that the statistics 

of the received irradiance fluctuations for various aperture diameters could be compared under 

somewhat similar atmospheric conditions. 

 

Measurement from the three-axis sonic anemometers at the transmitter revealed path 

characteristics very similar to those measured at the receiver. At the transmitter, average 

magnitude of wind speed was roughly 0.05 m/s with wind gusts of about 1.5 m/s. On the receiver 

side, the magnitude of wind speed measurements was about 0.1 m/s on average with occasional 

1.5 m/s gusts. One SLS-20 scintillometer was positioned at the transmitter and another was 

positioned near the receiver. The SLS-20‟s were used to record the refractive index structure 

constant 𝐶𝑛
2 and the inner scale of turbulence 𝑙0. Table 1 provides a summary of the atmospheric 

conditions of 𝐶𝑛
2 , 𝑙0, and 𝜌𝑠𝑝  at the times of data collection. Data is presented in order of 

increasing aperture size. As a generalization, it is expected for apertures that are smaller than the 

spatial coherence length 𝐷 < 𝜌𝑠𝑝  to match the gamma-gamma models better than apertures that 

are larger than the spatial coherence length  𝐷 > 𝜌𝑠𝑝  [7, 13, 33, 35]. Aperture averaging effects 

are said to prevalent when the aperture diameter exceeds the spatial coherence length by three 

times or more (𝐷 > 3𝜌𝑠𝑝 ) [7, 13]. 
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It is noted that during the 1.5mm diameter data collection the SNR was at the experiment‟s 

minimum since it is the experimentation‟s smallest diameter aperture (𝑆𝑁𝑅~𝐷). Conversely, the 

experiment‟s maximum theoretical SNR occurred during the data collection with 154mm 

diameter aperture as it represents the largest area of collection for the received irradiance signal. 

Table 1: Summary of atmospheric conditions during experimentation 

Aperture Size (𝑚𝑚) 𝐶𝑛
2 (𝑚−2/3) 

(measured) 

𝑙0 (𝑚𝑚) 

(measured) 
𝜌𝑠𝑝  (𝑚𝑚) 

(calculated) 

Time (EST) 

1.5 5.00 ∙ 10−14  5.69 6.89 16:01 

4.0 8.50 ∙ 10−14  6.00 5.33 15:32 

4.0 9.00 ∙ 10−14  6.02 5.19 16:19 

7.0 7.50 ∙ 10−14  5.93 5.67 16:15 

10.0 9.00 ∙ 10−14  4.98 2.53 13:15 

10.0 5.50 ∙ 10−14  4.91 6.41 15:26 

20.6 3.70 ∙ 10−14  4.86 2.47 13:11 

20.6 8.89 ∙ 10−14  5.54 5.15 15:21 

20.6 7.00 ∙ 10−14  5.90 5.86 15:56 

55.0 2.65 ∙ 10−13  5.43 2.97 13:07 

55.0 1.05 ∙ 10−13  6.23 4.83 15:51 

101.6 1.40 ∙ 10−13  5.74 4.12 15:47 

154.0 3.47 ∙ 10−13  5.46 2.60 13:04 

 

In addition, the gamma-gamma large-scale and small-scale scattering parameters are estimated 

from the measurement of atmospheric parameters 𝐶𝑛
2, 𝑙0, and 𝐿0. The procedure of related 

atmospheric measurements to the gamma-gamma model parameters is given in APPENDIX B 



63 

 

RELATION OF GAMMA-GAMMA MODEL PARAMETERS TO MEASURED 

PARAMETERS
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. The gamma-gamma model parameters calculated by atmospheric measurements are notated in 

the plots as 𝛼𝑡𝑟𝑦  and 𝛽𝑡𝑟𝑦 . A scintillation index based from the atmospheric measurement 

of 𝛼𝑡𝑟𝑦  and 𝛽𝑡𝑟𝑦  may be developed using Equation (3.20) as 

 
𝜍𝐼 𝑡𝑟𝑦

2 =  1 +
1

𝛼𝑡𝑟𝑦
  1 +

1

𝛽𝑡𝑟𝑦
 − 1. (4.3) 

 

The received signal is an intensity signal (with units of Watts) as the aperture integrates the 

irradiance signal received by the detector. Data for each aperture were collected at the ISTEF 

range while being examined in realtime for stationarity. The experiment‟s data was then post 

processed such that it was confidently reduced to stationary segments of approximately one 

minute in length. 

 

Comparison of experimental data and gamma-gamma model PDF plots are presented with an 

emphasis on aperture averaging characteristics, and we use irradiance to denote the power 

received by the detector as it is common in the literature [7, 13]. Then the mean number of level 

crossings and mean fade time of the received irradiance fluctuations are compared with the 

results of the gamma-gamma model. Finally, mean square number of level crossings and 

standard deviation of fade time are analyzed and compared with the results of the gamma-gamma 

model. Data will be presented in order of increasing aperture size (the smallest aperture size of 

1.5mm being the first). The parameters used to model the gamma-gamma distribution will be 

tabulated in each section for convenience. 
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4.4.1 PDF of Experimental Data 

Probability density data were computed from the irradiance data received with each of the 

apertures. This data were then compared with the gamma-gamma model presented in Section 

3.1.2 Gamma-Gamma Distribution. Best fit gamma-gamma model parameters were determined 

from the data. The large-scale scattering parameter is notated as 𝛼𝑔𝑔  𝑝𝑑𝑓  and the small-scale 

scattering parameter is notated as 𝛽𝑔𝑔  𝑝𝑑𝑓 . Similarly, a scintllation index may be developed from 

the parameters using Equation (3.20) as 

 
𝜍𝐼 𝑔𝑔  𝑝𝑑𝑓

2 =  1 +
1

𝛼𝑔𝑔  𝑝𝑑𝑓
  1 +

1

𝛽𝑔𝑔  𝑝𝑑𝑓
 − 1. (4.4) 

The scintillation index calculated from the experimentally collected irradiance data 𝜍𝐼 𝑚𝑒𝑎𝑠
2  is 

compared with the scintillation indices computed from PDF modeled gamma-gamma parameters 

𝜍𝐼 𝑔𝑔  𝑝𝑑𝑓
2  and the atmosphere inferred gamma-gamma parameters 𝜍𝐼 𝑡𝑟𝑦

2 . 

 

The gamma-gamma PDF models are obtained by first taking the received irradiance signal, and 

normalizing the irradiance signal such that the new normalized irradiance signal has a mean of 

unity. Forth with the received irradiance signal 𝐼(𝑡), we formulate a mean normalized irradiance 

signal 𝐼𝑛𝑜𝑟𝑚 (𝑡) by the definition 

 
𝐼𝑛𝑜𝑟𝑚  𝑡 =

𝐼 𝑡 

 𝐼(𝑡) 
. (4.5) 

It is observed that this normalization will lead to a irradiance distributed about a mean of unity 

  𝐼𝑛𝑜𝑟𝑚  𝑡  = 1 . Normalization of the received irradiance signal by the mean irradiance value 

will allow the PDF plots to be more readily compared with one another. PDF plots are presented 

with the ordinance containing irradiance given in units of decibels (dB), with the respect to mean 



66 

 

irradiance. The relationship between the received irradiance signal, the irradiance mean value, 

and the utilized irradiance ordinance in decibels is 

 
𝐼𝑑𝐵  𝑡 = 10 log10 𝐼𝑛𝑜𝑟𝑚  𝑡  = 10 log10  

𝐼 𝑡 

 𝐼(𝑡) 
 . (4.6) 

Additionally this normalization will place the peak of the PDF typically near but not exactly at 

the value of unity irradiance (0dB) [7, 50]. It is normally observed that the PDF resembles a wide 

horseshoe shape, and with the characteristic that the dynamic range of the received irradiance 

exhibits a dependence on the receiver aperture diameter 𝐷 [7, 13, 33, 50]. 

 

The information in Section 2.4 Aperture Averaging provides an introduction to the influence 

aperture size has on the received irradiance fluctuations. Aperture averaging is expected to play 

the least role in reducing fluctuations when analyzing an aperture of diameter 𝐷 < 𝜌𝑠𝑝 , previous 

examinations of experimentally collected PDF irradiance data confirm this notion [7, 12, 13, 31, 

33-35]. As the receiver diameter increases it is known that the irradiance fluctuations, quantified 

through the irradiance scintillation index 𝜍𝐼
2, will reduce. As the aperture diameter begins to 

increase beyond the spatial coherence radius, effects of aperture averaging in the received 

irradiance PDF become more prevalent and the gamma-gamma model becomes a less accurate 

approximation (see Section 2.4 Aperture Averaging) [10, 33]. Aperture averaging is established 

to be present when the aperture diameter exceeds the spatial coherence length by three times or 

more (𝐷 > 3𝜌𝑠𝑝 ) [7, 13]. 

Comparison of PDF data confirm that irradiance fluctuations reduce as aperture diameter 

increases. A decrease in the scintillation index will cause the received irradiance signal 
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fluctuations to exhibit a reduced dynamic range [7, 13, 50]. The results of the presented gamma-

gamma PDF model and experimental data are tabulated for convenience in Table 2: Summary of 

gamma-gamma PDF model data. 

Table 2: Summary of gamma-gamma PDF model data 

Aperture Size 

(mm) 

𝛼𝑔𝑔  𝑝𝑑𝑓  𝛽𝑔𝑔  𝑝𝑑𝑓  𝜍𝐼 𝑔𝑔  𝑝𝑑𝑓
2  𝛼𝑡𝑟𝑦  𝛽𝑡𝑟𝑦  𝜍𝐼 𝑡𝑟𝑦

2  𝜍𝐼 𝑚𝑒𝑎𝑠
2  Time 

(EST) 

1.5 1.74 4.02 0.968 1.40 1.60 1.786 1.296 16:01 

4.0 1.71 1.71 1.511 0.90 1.30 2.735 2.253 15:32 

4.0 1.85 1.85 1.374 0.90 1.30 2.735 1.934 16:19 

7.0 1.99 1.99 1.254 1.00 1.70 2.176 1.820 16:15 

10.0 2.36 2.36 1.029 1.30 2.20 1.573 1.312 15:26 

10.0 1.93 1.93 1.305 0.60 5.10 2.190 2.418 13:15 

20.6 3.14 3.15 0.737 1.30 4.90 1.130 0.857 15:56 

20.6 2.60 2.61 0.917 1.10 5.20 1.276 1.071 15:21 

20.6 2.29 2.28 1.065 0.60 19.30 1.805 1.500 13:11 

55.0 2.29 11.36 0.564 1.10 89.30 0.930 0.588 13:07 

55.0 2.48 34.90 0.413 1.90 34.90 0.570 0.247 15:51 

101.6 5.29 151.30 0.197 4.30 150.40 0.241 0.161 15:47 

154.0 4.80 67.60 0.226 4.80 950.40 0.210 0.178 13:04 

 

Figure 13 shows the PDF of the irradiance data received under somewhat weak-atmospheric 

conditions  𝐶𝑛
2~10−14 , with an aperture diameter of 1.5mm, and a spatial coherence length 𝜌𝑠𝑝  

of 6.89mm. The received irradiance signal displays a comparatively large dynamic range, with a 

considerable amount of probability density of the received irradiance signal falling into the lower 
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end of detection range. As such, the entire mean-normalized irradiance range width of the PDF is 

difficult to be accurately represented and we will only analyze the portion considered to be valid 

in measurement. This larger fluctuation about the mean value translates to a greater signal 

variance (smaller apertures exhibit a larger scintillation index than larger apertures). It is also 

known that the 1.5mm aperture exhibits the poorest SNR of the experimentation due to the wide 

dynamic range of intensity (irradiance integrated across the aperture). This leads to the 

expectation that the received signal will also exhibit a strong presence of low power levels. 

Given that the ISTEF range is cleared for eye-hazardous laser operation, a useable SNR was able 

to be achieved by transmitting at the laser‟s maximum output power. Since the smallest aperture 

also generally corresponds to the largest irradiance dynamic range in the PDF of received 

irradiance signal, the PDF will be wider in appearance with lower and upper irradiance tail 

appearing to be more flat in slope [7, 31, 50].  
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Figure 13 Experimental data PDF, 1.5mm aperture diameter 

 

The irradiance data collected with the 4mm aperture is presented in Figure 14. During this run, 

the atmospheric turbulence conditions were still somewhat weak in magnitude. Aperture 

diameter 𝐷 is slightly less than the spherical wave spatial coherence length 𝜌𝑠𝑝  of 5.33mm. This 

implies that there will not be significant aperture averaging (𝐷 < 3𝜌𝑠𝑝 ), although the trend will 

begin to display its characteristics as the aperture diameter 𝐷 increases above the spatial 

coherence length (𝐷 > 3𝜌𝑠𝑝 ). As aperture size increases, the PDF shape becomes narrower with 

the upper and lower tails exhibiting a steeper slope. A second collection of 4mm aperture data is 

presented in Figure 15, with atmospheric conditions remaining almost exact. The results of the 

similar diameter and atmospheric characteristics mirror one another. 
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Figure 14: Experimental data PDF, 4.0mm aperture diameter. 

 

 

Figure 15: Experimental data PDF, 4.0mm aperture diameter. 
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The irradiance data collected with the 7mm aperture is presented in Figure 14. During this run, 

the atmospheric turbulence conditions were still somewhat weak in magnitude. Aperture 

diameter 𝐷 is approximately a millimeter or two greater than the spherical wave spatial 

coherence length 𝜌𝑠𝑝  of 5.67mm. The onset of aperture averaging effects is starting to become 

more apparent than they were with the 4mm aperture, however the result will be more drastic as 

diameter is further increased. At this point, the mean-normalized irradiance dynamic range is 

approximately 40dB in width. 

 

 

Figure 16: Experimental data PDF, 7.0mm aperture diameter. 

 

The irradiance data collected with the 10mm aperture is presented in Figure 17. For comparison, 

Figure 18 has exemplified the effect of increasing the atmospheric turbulence (𝐶𝑛
2 approximately 

one order of magnitude larger in Figure 18 than demonstrated in Figure 17). At the time of 
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13:15EST, atmospheric turbulence conditions were moderate in magnitude whereas it was 

becoming somewhat weaker by 15:26EST. A greater dynamic range in received irradiance 

fluctuations can be observed in Figure 18 exhibiting the greater turbulence. In this PDF, the 

aperture diameter 𝐷 is considerably more (𝐷 > 3𝜌𝑠𝑝 ) than the spherical wave spatial coherence 

length 𝜌𝑠𝑝  of 2.53mm. Again, the effects of aperture averaging are becoming more prevalent but 

will exaggerate as diameter is increased. 

 

Figure 17: Experimental data PDF, 10.0mm aperture diameter. 
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Figure 18: Experimental data PDF, 10.0mm aperture diameter. 

The irradiance data collected with the 20.6mm aperture PDF data under weak turbulence is 

shown in Figure 19 (taken at 15:56EST) and a repeated measurement made at 15:21EST is 

shown in Figure 20. As before, the effect of increased turbulence is demonstrated with Figure 21 

as the atmosphere at 13:11EST is slightly stronger than the 15:21EST and 15:56EST data 

collections. 
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Figure 19: Experimental data PDF, 20.6mm aperture diameter 

 

 

Figure 20: Experimental data PDF, 20.6mm aperture diameter. 
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The dynamic range of received irradiance fluctuations again appears to reduce as aperture size 

increases. In addition, it is observed the dynamic range of received irradiance fluctuations 

decreases as turbulence decreases. In these PDF measurements, the aperture diameter 𝐷 of 

20.6mm is significantly greater than the spherical wave spatial coherence length 𝜌𝑠𝑝  of about 

5mm. As before, the aperture averaging condition relating aperture diameter 𝐷 is spherical 

spatial coherence length 𝜌𝑠𝑝  is met (𝐷 > 3𝜌𝑠𝑝 ). 

 

Figure 21: Experimental data PDF, 20.6mm aperture diameter. 

 

The apertures presented in Figure 48, Figure 49, Figure 50, and Figure 51 are considerably larger 

than those previously presented (ranging 55mm and greater in diameter). With the increase in 

aperture size, it is expected that the gamma-gamma model parameter representing the number of 

small-scale scatterers 𝛽 will become increasingly larger [10, 33, 34]. Additionally, atmospheric 
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turbulence during these collection times is somewhat moderate (𝐶𝑛
2~10−13). For these data 

collections, the spherical wave spatial coherence length 𝜌𝑠𝑝  ranges between 2-5mm. The 

apertures are all considerably larger than this length so one expects aperture averaging 

characteristics to be especially prevalent (the 𝐷 > 3𝜌𝑠𝑝  condition is met). 

 

 

Figure 22: Experimental data PDF, 55.0mm aperture diameter. 
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Figure 23: Experimental data PDF, 55.0mm aperture diameter. 

The apertures presented in Figure 24 and Figure 25 display the most amount of aperture 

averaging. This can readily observed with the dynamic range of the received irradiance 

fluctuations, as it is only about 20dB wide. This is a considerable reduction when compared to 

the 40dB wide PDF seen with the smaller apertures such as in Figure 15: Experimental data 

PDF, 4.0mm aperture diameter. 
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Figure 24: Experimental data PDF, 101.6mm aperture diameter. 

 

Figure 25: Experimental data PDF, 154.0mm aperture diameter. 
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Irradiance data collected and presented match the gamma-gamma model to a satisfactory extent. 

This is expected as previous results and models have confirmed these results [7, 13]. The focus 

of the following sections will involve analysis of irradiance threshold fading within the data 

segments used to compute PDF measurements. 

4.4.2 Mean Number of Level Crossings of Experimental Data 

In this section the experimental data are compared with the gamma-gamma mean number of 

level crossings model. Level crossings are counted in terms of fades per second. Fades per 

second is essentially one half the number of level crossings per second, as the signal must 

traverse the threshold level once to be considered faded and traverse the threshold level once 

more to come out of the fade. The analysis to calculate the level crossing rate is summarized in 

Section 3.2.1 Mean Level Crossing Rate, and in Section 3.4.1 Mean Level Crossing Rate of 

Gamma-Gamma Distributed Irradiance. Overall, data presented is shown to compare well with 

the data and analysis seen in the literature [7, 10, 13, 34, 45]. The calculated gamma-gamma 

parameter values and the best-fit gamma-gamma mean number of level crossing parameter 

values are tabulated in Table 3. Note that the value of 𝛽𝑔𝑔  𝑚𝑒𝑎𝑛𝑓𝑑 is capped at 50 for the last three 

collections shown in Table 3 due to numerical stability because 𝛼𝑔𝑔  𝑚𝑒𝑎𝑛𝑓𝑑  is also slightly 

greater. This allows for the plots to be reliably generated via an automated scheme. 
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Table 3: Summary of gamma-gamma mean fade model data 

Aperture 

Size 

(mm) 

𝛼𝑔𝑔  𝑚𝑒𝑎𝑛𝑓𝑑  𝛽𝑔𝑔  𝑚𝑒𝑎𝑛𝑓𝑑  𝜍𝐼 𝑔𝑔  𝑚𝑒𝑎𝑛𝑓𝑑
2  𝛼𝑡𝑟𝑦  𝛽𝑡𝑟𝑦  𝜍𝐼 𝑡𝑟𝑦

2  𝜍𝐼 𝑚𝑒𝑎𝑠
2  Time 

EST 

1.5 1.19 1.36 2.194 1.40 1.60 1.786 1.296 16:01 

4.0 1.95 2.25 1.185 0.90 1.30 2.735 2.253 15:32 

4.0 1.95 2.25 1.185 0.90 1.30 2.735 1.934 16:19 

7.0 2.50 2.55 0.949 1.00 1.70 2.176 1.820 16:15 

10.0 2.71 3.30 0.784 1.30 2.20 1.573 1.312 15:26 

10.0 1.50 7.65 0.885 0.60 5.10 2.190 2.418 13:15 

20.6 2.83 7.35 0.537 1.30 4.90 1.130 0.857 15:56 

20.6 2.26 7.80 0.627 1.10 5.20 1.276 1.071 15:21 

20.6 1.50 28.95 0.724 0.60 19.30 1.805 1.500 13:11 

55.0 2.39 133.95 0.429 1.10 89.30 0.930 0.588 13:07 

55.0 2.86 50.0 0.377 1.90 34.90 0.570 0.247 15:51 

101.6 6.76 50.0 0.171 4.30 150.40 0.241 0.161 15:47 

154.0 5.80 50.0 0.196 4.80 950.40 0.210 0.178 13:04 

 

Considering that the mean value of the irradiance signal is held constant (which will 

automatically happen for a mean-normalized irradiance signal), we generally expect the number 

of fades per second to reduce as the irradiance threshold parameter 𝐼𝑇  decreases well beyond the 

mean irradiance value [10, 33, 34]. A decrease in irradiance threshold parameter 𝐼𝑇  is equivalent 

to an increase in the fade threshold parameter 𝐹𝑇. The initial increase in fades per second with 

the low values of 𝐹𝑇 (3dB of less) is contributed to by the characteristics of the gamma-gamma 

PDF irradiance model. Generally speaking it is in this range when the fades per second decrease 
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because the irradiance threshold 𝐼𝑇  is approaching the mean irradiance value  𝐼 , and the PDF of 

irradiance signal is heavily weighted toward the lower irradiance values (Section 4.4.1 PDF of 

Experimental Data) [7, 13]. Therefore when analyzing larger irradiance thresholds 𝐼𝑇  it is more 

probable for a signal to fade, and stay in a faded state, as opposed to returning back above the 

irradiance threshold. 

 

As discussed in Section 3.2.1 Mean Level Crossing Rate, the gamma-gamma mean fade model 

requires three shape parameters; the large-scale scattering parameter 𝛼, the small-scale scattering 

parameter 𝛽, and the quasi frequency 𝜈0. These parameters will be denoted in the data presented 

for mean fade time characterization as 𝛼𝑔𝑔  𝑚𝑒𝑎𝑛𝑓𝑑 , 𝛽𝑔𝑔  𝑚𝑒𝑎𝑛𝑓𝑑 , and 𝜈𝑔𝑔  𝑚𝑒𝑎𝑛𝑓𝑑 . Once again, the 

scintillation index 𝜍𝐼
2 can be calculated from the large-scale and small-scale scattering 

parameters using Equation (3.20) and this is presented as 𝜍𝐼 𝑔𝑔𝑚𝑒𝑎𝑛𝑓𝑑
2  for the mean fade time 

analysis. 

 

Analysis of the data again starts with the smallest of the apertures, 1.5mm. The minimum 

aperture scenario represents the minimum SNR for this experiment therefore making 

measurements somewhat difficult in stronger atmospheric-turbulence [7]. As stated in 4.4.1 PDF 

of Experimental Data, data presented for the 1.5mm aperture were recorded under somewhat 

benign atmospheric conditions  𝐶𝑛
2~10−14  to allow for a better estimation of the probability 

density function. The trend in the data presented for the 1.5mm aperture in Figure 26 fits the 

expected, with the number of fades per second showing a decrease as fade threshold parameter 

reaches its maximum value. The PDF of the irradiance for the 1.5mm aperture was demonstrated 
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to be the largest in dynamic range of irradiance as in Figure 13. It is noted here that the gamma-

gamma mean fade time model predicts a larger scintillation index for the received irradiance than 

what is measured. Indeed the calculated value of 𝜍𝐼 𝑡𝑟𝑦
2 = 1.786 is not drastically larger 

than 𝜍𝐼 𝑔𝑔𝑚𝑒𝑎𝑛𝑓𝑑
2 = 2.194 however is enough of a difference to take note of and this can likely 

be attributed to minimization difficulty. 

 

 

Figure 26: Experimental data mean number of fades per second, 1.5mm aperture diameter. 

 

The results obtained for the 4mm aperture are shown in Figure 27 and Figure 28. As discussed in 

Section 4.4.1 PDF of Experimental Data, the apertures where 𝐷 < 𝜌𝑠𝑝  exhibits the scenario 

where we would expect minimal aperture averaging. As aperture size is increased, fade time 

statistics will begin to change as the PDF changes. Typically 𝐷 > 3𝜌𝑠𝑝  indicates that there will 
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be a large amount of aperture averaging present, and the PDF of received irradiance will reflect 

this aspect [7, 13]. This will cause for an increase in the number of fades seen when 𝐹𝑇 is small, 

and decrease the number of fades when 𝐹𝑇  is large. 

 

Figure 27: Experimental data mean number of fades per second, 4.0mm aperture diameter. 

 

It is noted that, in both 4mm aperture plots, the scintillation index calculated from the gamma-

gamma mean fade time model is noticeably smaller than what is experimentally measured. 

Turbulence was semi-moderate during the collection of 4mm aperture data (~10−13). The 

scintillation index becomes somewhat sensitive to changes in 𝛼 and 𝛽 as these scattering 

parameters become small. It is postulated that this is the mean factor in contributing to this error, 

as the parameters themselves seem somewhat accurate and representative of collected data. It 
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will be shown in the mean fade plots for larger apertures that the gamma-gamma mean fade 

model scintillation index follows experimental data to a better extent. 

 

Figure 28: Experimental data mean number of fades per second, 4.0mm aperture diameter. 

 

As aperture size is increased to 7mm, similar trends are observed as with the two smaller 

apertures. Figure 29 shows the data collected under very similar conditions as the 4mm data with 

𝐶𝑛
2 being about 10−13 in magnitude. The aperture diameter 𝐷 is beginning to exceed the spatial 

coherence length 𝜌𝑠𝑝  but aperture averaging effects are not yet immediately obvious. Again, the 

scintillation index predicted with the gamma-gamma mean fade model does not quite match with 

the experimentally measured scintillation index. The best fit to experimental data gamma-gamma 

model parameters 𝛼𝑔𝑔  𝑚𝑒𝑎𝑛𝑓𝑑  and 𝛽𝑔𝑔  𝑚𝑒𝑎𝑛𝑓𝑑  exhibit a fair amount of agreement with the 

theoretically obtained gamma-gamma model parameters 𝛼𝑡𝑟𝑦  and 𝛽𝑡𝑟𝑦 . The mismatch in 
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theoretically predicted and best fit scintillation index can be attributed to the sensitivity in 

gamma-gamma modeled scintillation index to small values of 𝛼 and 𝛽 [7]. 

 

Figure 29: Experimental data mean number of fades per second, 7.0mm aperture diameter. 

 

Figure 30 demonstrates the 10mm aperture data collection under relatively weaker 

turbulence  𝐶𝑛
2~10−14 , and Figure 31 shows the 10mm aperture data collection under slightly 

stronger turbulence  𝐶𝑛
2~10−13 . It is observed that there does not a significant difference in the 

three 10mm aperture data collections when analyzing mean fade statistics. At this point, aperture 

averaging effects are beginning to be observed as the curve exhibits a steeper roll off as 𝐹𝑇  is 

increased when compared with mean number of fade plots for the smaller aperture. However, the 

effects are not yet as demonstrative as is the case with larger apertures where 𝐷 > 3𝜌𝑠𝑝 . 
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Figure 30: Experimental data mean number of fades per second, 10.0mm aperture diameter. 

 

 

Figure 31: Experimental data mean number of fades per second, 10.0mm aperture diameter. 
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We will next look into the 20.6mm aperture data collected under conditions of semi-moderate 

turbulence  𝐶𝑛
2~10−13 . Spatial coherence length 𝜌𝑠𝑝  is exceeded by aperture diameter 𝐷 by 

more than three times and we expected aperture averaging effects to be more prevalent in the 

received irradiance data (𝐷 > 3𝜌𝑠𝑝 ). The data collected with the 20.6mm is shown in Figure 32, 

Figure 33, and Figure 34. As seen in the plots, data appear to be similar to the smaller aperture 

plots however with a steeper roll off at larger values of 𝐹𝑇. Additionally, the plots exhibit a 

flatter roll off at the lower values of 𝐹𝑇. It will be seen that this trend continues as the aperture 

diameter is further increased. 

 

 

Figure 32: Experimental data mean number of fades per second, 20.6mm aperture diameter. 
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Figure 33: Experimental data mean number of fades per second, 20.6mm aperture diameter. 

 

 

Figure 34: Experimental data mean number of fades per second, 20.6mm aperture diameter. 
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We last analyze the larger set of apertures consisting of the 55mm, 101.6mm, and 154mm 

aperture diameter data collections. In these cases, the spatial coherence length 𝜌𝑠𝑝  is much 

smaller than these aperture diameters (with the 𝐷 > 3𝜌𝑠𝑝  condition is met) therefore signifying 

that a strong influence of aperture averaging will be present. From the gamma-gamma irradiance 

PDF, that the gamma-gamma small-scale scattering parameter is much larger and therefore 

scintillation index is less sensitive to its exact value. This is demonstrated in the modeled and 

compared values of 𝛼 and 𝛽. We that find the measured scintillation index 𝜍𝐼 𝑚𝑒𝑎𝑠
2  and the 

theoretically inferred scintillation index 𝜍𝐼 𝑡𝑟𝑦
2  agree with the modeled gamma-gamma mean 

fade time scintillation index 𝜍𝐼 𝑔𝑔  𝑚𝑒𝑎𝑛𝑓𝑑
2 . 

 

Figure 35: Experimental data mean number of fades per second, 55.0mm aperture diameter. 
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Figure 36: Experimental data mean number of fades per second, 55.0mm aperture diameter. 

 

The data for these collections is presented from Figure 35 to Figure 38. Atmospheric turbulence 

is about the same in these four plots, with 𝐶𝑛
2~10−13  denoting semi-moderate turbulence 

conditions. Again, these curves exhibit a stronger roll off as 𝐹𝑇 is increased, and tend to become 

more flat as 𝐹𝑇 is decreased. 
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Figure 37: Experimental data mean number of fades per second, 101.6mm aperture diameter. 

 

 

Figure 38: Experimental data mean number of fades per second, 154.0mm aperture diameter. 
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4.4.3 Mean Fade Time of Experimental Data 

This section examines mean fade time statistics of the data collected at the ISTEF range. The 

previously developed expression in Equation (3.67) of Section 3.4.1 will be utilized. The results 

presented in this section burrow heavily from the results in Section 4.4.2 Mean Number of Level 

Crossings of Experimental Data and those presented in 4.4.1 PDF of Experimental Data. The 

interplay between mean number of level crossings and the cumulative distribution function 

(CDF) given in Equation (3.46). As stated in the analysis for the mean number of level crossings, 

it is expected that the number of fades per second will decrease at the fade threshold 

parameter 𝐹𝑇 is increased. This will remain true for mean fade time, as one would expect the 

fade time to decrease as the irradiance threshold level 𝐼𝑇  is decreased. Additionally, as aperture 

size is increased well beyond the spatial coherence length (𝐷 > 3𝜌𝑠𝑝 ) the fade-time should 

exhibit a trend in decrease [10, 33, 34]. 

 

The results shown from Figure 39 to Figure 51 confirm these notions. Placed again for 

convenience, the calculated parameters are shown in Table 3: Summary of gamma-gamma mean 

fade model data. 
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Figure 39: Experimental data mean fade time, 1.5mm aperture diameter. 

 

The mean fade time data for the 1.5mm aperture are presented in Figure 39. In the plots for the 

smaller apertures we will see the mean fade curve exhibiting a slower roll off when compared to 

the plots for larger apertures.  The effect of aperture averaging on this roll off is inherent from 

the PDF plots shown in Section 4.4.1 PDF of Experimental Data. It will be noted from data 

collection that the smaller apertures as exhibit a somewhat larger mean fade time at lower values 

of 𝐹𝑇 . 
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Figure 40: Experimental data mean fade time, 4.0mm aperture diameter. 

 

 

Figure 41: Experimental data mean fade time, 4.0mm aperture diameter. 
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The plots shown in Figure 40 to Figure 44 show the mean fade time data collected for the 

middle-sized apertures. Here the curve roll off is becoming slightly greater than what is shown 

for the smaller apertures. 

 

Figure 42: Experimental data mean fade time, 7.0mm aperture diameter. 

 



96 

 

 

Figure 43: Experimental data mean fade time, 10.0mm aperture diameter. 

 

 

Figure 44: Experimental data mean fade time, 10.0mm aperture diameter. 
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The plots shown in Figure 45, Figure 46 and Figure 47 demonstrate the mean fade time data 

collected with the 20.6mm aperture. As aperture diameter gets much greater than the spatial 

coherence length 𝜌𝑠𝑝  (more than three times greater in this case), the mean fade time begins to 

decrease more rapidly with an increase of 𝐹𝑇. 

 

Figure 45: Experimental data mean fade time, 20.6mm aperture diameter. 

 

This effect can be subtle to note as the mean fade time data itself presents variance. For this 

reason, the mean fade time plots are postulated to not be a tell-all of fade-statistics. It will be 

with coordination of Section 4.4.5 Standard Deviation of Fade Time of Experimental Data that 

an understanding of fade characteristics will be developed. 
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Figure 46: Experimental data mean fade time, 20.6mm aperture diameter. 

 

 

Figure 47: Experimental data mean fade time, 20.6mm aperture diameter. 
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The 55mm aperture diameter data is presented in Figure 48 and Figure 49. These plots exhibit a 

larger value for the gamma-gamma small-scale parameter 𝛽 when compared to the smaller 

diameters. The exact effect of this parameter on the overall shape of the gamma-gamma average 

fade time curve in this case may be difficult to discern given the additional presence of the 

inferred quasi-frequency term 𝜈𝑔𝑔  𝑚𝑒𝑎𝑛𝑓𝑑 .  

 

Figure 48: Experimental data mean fade time, 55.0mm aperture diameter. 

 



100 

 

 

Figure 49: Experimental data mean fade time, 55.0mm aperture diameter. 

 

 

Figure 50: Experimental data mean fade time, 101.6mm aperture diameter. 
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Last presented is the mean fade time data for the 154mm aperture. Figure 51 shows the plot of 

the data, and we again note the large value of 𝛽 that is present. 

 

Figure 51: Experimental data mean fade time, 154.0mm aperture diameter. 

 

Data agree reasonably well with the theoretical model for the various sized apertures. The 

dependence on aperture diameter implies a more appropriate model should be utilized to 

encompass the aperture averaging effects when analyzing irradiance threshold fades. 

4.4.4 Mean Square Number of Level Crossings of Experimental Data 

The developed theoretical expressions for the mean square number of level crossings of a 

gamma-gamma distributed irradiance signal will be compared with the experimental data 

collected at the ISTEF range. Mean square number of level crossings per second are presented, 

and compared with the newly developed theory from Section 3.4.2 Mean Square Level Crossing 

Rate of Gamma-Gamma Distributed Irradiance. The expression derived in Equation (3.87) will 
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be utilized, and compared with the experimental results for the various aperture sizes. The 

behavior of the developed gamma-gamma mean square number of crossings expression is based 

heavily upon the same expressions as the mean number of crossings. As such, it is expected that 

the shape of the mean square crossing curves will remain somewhat similar to the average 

crossing curves. 

 

As with the gamma-gamma PDF and mean fade time models, the gamma-gamma model 

parameters will be found by a best fit to data. We will use 𝛼𝑔𝑔  𝑚𝑠𝑞  and 𝛽𝑔𝑔  𝑚𝑠𝑞  to denote the 

respective mean square gamma-gamma model parameters. With the model parameters, a 

scintillation index 𝜍𝐼
2 may be developed with Equation (3.20) to be 

 
𝜍𝐼 𝑔𝑔  𝑚𝑠𝑞

2 =  1 +
1

𝛼𝑔𝑔  𝑚𝑠𝑞
  1 +

1

𝛽𝑔𝑔  𝑚𝑠𝑞
 − 1. (4.7) 

As before, both the modeled parameters and the scintillation index will be compared for 

apertures of different size. We expect that as aperture size increases, the additional averaging 

will attribute to a reduction in signal fluctuation. The exact effects of aperture averaging on mean 

square number of level crossings may be out of the scope of this analysis with consideration that 

the gamma-gamma irradiance PDF model is not heavily based upon aperture averaging. This 

however does not stop one from investigating such effects in determination of model parameters. 

A summary of the gamma-gamma mean square fade time parameters is given in Table 4, and 

presented alongside the experimentally measured parameters. 
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Table 4: Summary of gamma-gamma mean fade model data 

Aperture 

Size 

(mm) 

𝛼𝑔𝑔  𝑚𝑠𝑞  𝛽𝑔𝑔  𝑚𝑠𝑞  𝜍𝐼 𝑔𝑔  𝑚𝑠𝑞
2  𝛼𝑡𝑟𝑦  𝛽𝑡𝑟𝑦  𝜍𝐼 𝑡𝑟𝑦

2  𝜍𝐼 𝑚𝑒𝑎𝑠
2  Time 

(EST) 

1.5 0.68 8.42 1.775 1.40 1.60 1.786 1.296 16:01 

4.0 0.59 7.22 2.078 0.90 1.30 2.735 2.253 15:32 

4.0 0.58 7.00 2.108 0.90 1.30 2.735 1.934 16:19 

7.0 0.57 6.70 2.168 1.00 1.70 2.176 1.820 16:15 

10.0 0.60 6.47 2.082 1.30 2.20 1.573 1.312 15:26 

10.0 0.60 6.49 2.082 0.60 5.10 2.190 2.418 13:15 

20.6 0.52 5.72 2.449 1.30 4.90 1.130 0.857 15:56 

20.6 0.48 6.01 2.599 1.10 5.20 1.276 1.071 15:21 

20.6 0.54 6.08 2.339 0.60 19.30 1.805 1.500 13:11 

55.0 0.47 5.36 2.727 1.10 89.30 0.930 0.588 13:07 

55.0 0.56 5.40 2.311 1.90 34.90 0.570 0.247 15:51 

101.6 0.57 3.33 2.600 4.30 150.40 0.241 0.161 15:47 

154.0 0.40 4.02 3.379 4.80 950.40 0.218 0.178 13:04 

 

Numerical instability within the solution for the mean square fade time expression is outlined in 

APPENDIX C. In a summary statement, it is known that large values of the small-scale 

scattering parameter 𝛽 will be difficult to compute with readily available methods due to the 

numerical limit imposed by 64-bit Windows architecture. A workaround can be developed to 

handle the numerical difficulty; however this method is not explored in the included analysis. An 

alternative way of characterizing this behavior is simply stating that the contribution from the 
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additional scale in gamma-gamma distribution becomes negligible and therefore behavior 

approaches (single) gamma distributed irradiance [7, 13]. 

 

The analysis of mean square fade times begins with the 1.5mm aperture diameter data. Figure 52 

plots the experimentally obtained data alongside the theoretical gamma-gamma mean square 

irradiance threshold crossing model. As expected, the shape of the model and the trend of the 

collected data are somewhat similar to those found for mean level crossings in Section 4.4.2 

Mean Number of Level Crossings of Experimental Data. We find that the model 

parameters 𝛼𝑔𝑔  𝑚𝑠𝑞  and 𝛽𝑔𝑔  𝑚𝑠𝑞  are comparable to those measured theoretically via 𝐶𝑛
2 and 𝑙0. 

Additionally, the scintillation index calculated from the model parameters 𝜍𝐼 𝑔𝑔  𝑚𝑠𝑞
2  compares 

reasonably well with that of the received irradiance data 𝜍𝐼 𝑚𝑒𝑎𝑠
2 . 

 

Figure 52: Experimental data mean square number of crossings per second, 1.5mm aperture diameter. 
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Figure 53 and Figure 54 show the mean square level crossing data taken with the 4mm aperture. 

We observe that the model parameters 𝛼𝑔𝑔  𝑚𝑠𝑞  and 𝛽𝑔𝑔  𝑚𝑠𝑞  are comparable to those measured 

theoretically, 𝛼𝑡𝑟𝑦  and 𝛽𝑡𝑟𝑦 . And in suit, the scintillation index calculated from the model 

parameters 𝜍𝐼 𝑔𝑔  𝑚𝑠𝑞
2  stands well with that of the received irradiance data 𝜍𝐼 𝑚𝑒𝑎𝑠

2 . We will 

generally observe the peak „hump‟ to move toward lower values of 𝐹𝑇 as the receiver aperture 

size is increased. As has been mentioned, this will become more prevalent at larger aperture sizes 

where 𝐷 > 3𝜌𝑠𝑝 . 

 

Figure 53: Experimental data mean square number of crossings per second, 4.0mm aperture diameter. 
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Figure 54: Experimental data mean square number of crossings per second, 4.0mm aperture diameter. 

 

Figure 55 demonstrates the gamma-gamma mean square threshold crossing model with an 

aperture of 7mm diameter. Again, the modeled parameters compare well with those theoretically 

observed. The scintillation indices also agree to an acceptable extent. 

 

Figure 56 and Figure 57 show the irradiance data collected with the 10mm aperture. We begin to 

see the hump moving toward lower values of 𝐹𝑇, and we note that the modeled small-scale 

parameter is beginning to see an increase. The experimentally observed scintillation 

index 𝜍𝐼 𝑚𝑒𝑎𝑠
2  and the theoretically observed scintillation index 𝜍𝐼 𝑡𝑟𝑦

2  match decently well with 

the modeled scintillation index. 
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Figure 55: Experimental data mean square number of crossings per second, 7.0mm aperture diameter. 

 

 

Figure 56: Experimental data mean square number of crossings per second, 10.0mm aperture diameter. 
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Figure 57: Experimental data mean square number of crossings per second, 10.0mm aperture diameter. 

 

The data collections for the 20.6mm aperture are presented in Figure 71, Figure 72, and Figure 

73. It is here that we begin to notice the difficulty in utilizing larger values of 𝛽𝑔𝑔  𝑚𝑠𝑞  due to 

numerical instability; this issue is further outlined in APPENDIX C. To overcome this obstacle, 

the small-scale gamma-gamma shape parameter for the mean square fade model is limited such 

that the calculation can be successfully completed. This will cause the mean square fade model‟s 

scintillation index 𝜍𝐼 𝑔𝑔𝑚𝑠𝑞
2  to be slightly larger than it should be. The effect of this is 

demonstrated in the modeled values for 20.6mm and greater aperture diameters. 
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Figure 58: Experimental data mean square number of crossings per second, 20.6mm aperture diameter. 

 

 

Figure 59: Experimental data mean square number of crossings per second, 20.6mm aperture diameter. 
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Figure 60: Experimental data mean square number of crossings per second, 20.6mm aperture diameter. 

 

Received irradiance data for aperture of diameter 55mm is shown in Figure 61 and in Figure 62. 

In these plots the hump of the curve has continued to move towards lower values of 𝐹𝑇 when 

compared to the results from smaller apertures. We notice the significance of limiting the small-

scale parameter 𝛽𝑔𝑔  𝑚𝑠𝑞  for numerical stability on the modeled scintillation index 𝜍𝑔𝑔  𝑚𝑠𝑞
2  (the 

scintillation indices differ by a significant amount).  It is noted that the models definitely have 

the potential to correctly fit the data; however use of the theoretically observed small-scale 

parameter 𝛽𝑡𝑟𝑦  is impractical for computation and unable to be utilized for these larger 

apertures. Instead, the largest value of 𝛽𝑔𝑔  𝑚𝑠𝑞  that calculation will permit is utilized. 
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Figure 61: Experimental data mean square number of crossings per second, 55.0mm aperture diameter. 

 

 

Figure 62: Experimental data mean square number of crossings per second, 55.0mm aperture diameter. 
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The largest aperture diameters of 101.6mm and 151mm are shown in Figure 63 and Figure 64, 

respectively. The peak of the curve continues to move toward lower values of 𝐹𝑇  with increasing 

aperture diameters. Additionally, the calculation for such large values of the gamma-gamma 

model parameter 𝛽𝑔𝑔  𝑚𝑠𝑞  is not readily computable. We find the general shape of the curve to be 

about the same, and postulate that the model would fit the presented data if computation were 

made possible. 

 

Figure 63: Experimental data mean square number of crossings per second, 101.6mm aperture diameter. 
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Figure 64: Experimental data mean square number of crossings per second, 154.0mm aperture diameter. 

 

It is observed that with the mean square number of crossings per second, apertures of diameter 

20.6mm or greater exhibit deviation from the theoretical expression. It is known that larger 

values of the gamma-gamma model parameter 𝛽𝑔𝑔  𝑚𝑠𝑞  attribute difficulty in numerical 

computation. An avoidance of the numerical computational issue is feasible, and would likely 

lead to better modeled results. It is also postulated that this is due to aperture averaging effects 

(𝐷 > 3𝜌𝑠𝑝 ), which are not taken into account with the gamma-gamma irradiance PDF model. It 

is suggested that a better PDF model, encompassing the effects of aperture averaging, would lead 

to more suitable results. 
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4.4.5 Standard Deviation of Fade Time of Experimental Data 

We will now compare the developed theoretical model for the standard deviation in fade time for 

a gamma-gamma distributed irradiance signal with the experimental data collected at the ISTEF 

range. The theoretical model derived and utilized is detailed in Section 3.4.3 Gamma-Gamma 

Fade Time Statistics. Although variance of fade time is nominally mentioned, standard deviation 

of fade time may be readily substituted due to the half power relation between the two. This 

analysis will look at standard deviation of fade time as the time unit of milliseconds is more 

familiar, and is also readily comparable with mean fade time. 

 

The data presented in this section are the amalgamation of the data presented in the previous 

sections (PDF, mean number of level crossings, mean fade-time, and mean square number of 

level crossings). With this in mind, one could reasonably expect the greatest deviance of 

experimental data from the theoretical model. However, the presented data represent a scenario 

in which the theoretically derived and experimentally obtained values show agreement. 

 

We begin with the smallest receiver aperture of 1.5mm in diameter in Figure 65. As stated before 

in Section 4.4.4 Mean Square Number of Level Crossings of Experimental Data, the scintillation 

indices share agreement in these smaller apertures. The standard deviation of fade time shows a 

good agreement with the collected data at the lower irradiance thresholds 𝐼𝑇  (large 𝐹𝑇). It would 

be best to agree in this region is it is the region most likely to be used when operating a 

communication system (greater average irradiance  𝐼 , lower threshold irradiance 𝐼𝑇). It is 

noticed that the gamma-gamma model exhibits an overestimation of standard deviation in fade 
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time as 𝐹𝑇 becomes small. This appears to only be prevalent with the smaller aperture sizes and 

the model appears to improve as 𝛽𝑔𝑔  𝑚𝑠𝑞  increases (that is, until its increase leads numerical 

instability). 

 

Figure 65: Experimental data standard deviation of fade time, 1.5mm aperture diameter. 

 

The 4mm aperture data is analyzed in Figure 66 and again in Figure 67. The results appear 

almost identical to what is seen with the 1.5mm aperture. The results presented in this section 

signify that the standard deviation of fade-time is considerable when compared to the mean fade-

time data presented in Section 4.4.3. The standard deviation of fade time is generally on the same 

order of magnitude as the mean fade time. 
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Figure 66: Experimental data standard deviation of fade time, 4.0mm aperture diameter. 

 

 

Figure 67: Experimental data standard deviation of fade time, 4.0mm aperture diameter. 
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As aperture size is slightly increased to 7mm, the data exhibits similar characteristics. Figure 68 

shows the data, and we again note the agreement at the larger values of 𝐹𝑇 . As mentioned in the 

previous section, the modeled parameters and the scintillation indices all show relatively good 

agreement. This continues strong motivation to conclude that the derived gamma-gamma model 

provides a feasible estimation of experimental data. Figure 69 and Figure 70 shows the data 

collected with the 10mm aperture. It is again noted that there is strong agreement between the 

experimental data and the gamma-gamma model predictions. Additionally, the experimentally 

determined and modeled gamma-gamma model parameters track one another a practical amount. 

 

Figure 68: Experimental data standard deviation of fade time, 7.0mm aperture diameter. 
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Figure 69: Experimental data standard deviation of fade time, 10.0mm aperture diameter. 

 

 

Figure 70: Experimental data standard deviation of fade time, 10.0mm aperture diameter. 
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As aperture size is continued to be increased, the comparison between gamma-gamma model 

parameters and experimentally determined parameters once again becomes problematic due to 

the numerical instability issue outlined in APPENDIX C. The irradiance data collected with the 

20.6mm aperture is shown in Figure 71, Figure 72, and Figure 73. Aperture averaging criteria are 

met as we find that 𝐷 > 3𝜌𝑠𝑝 . Again, the gamma-gamma model does a good job of matching the 

shape of the data received within the experiment. The theoretically modeled parameters match up 

somewhat sensibly with the experimentally observed parameters. The predicted scintillation 

index 𝜍𝐼 𝑔𝑔𝑚𝑠𝑞
2  in these three plots is consistently larger than the experimentally measured 

scintillation index 𝜍𝐼 𝑚𝑒𝑎𝑠
2 . We again attribute this to not being able to effectively compute the 

gamma-gamma model standard deviation of fade time result for larger values of 𝛽𝑔𝑔  𝑚𝑠𝑞 . 

 

Figure 71: Experimental data standard deviation of fade time, 20.6mm aperture diameter. 
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Figure 72: Experimental data standard deviation of fade time, 20.6mm aperture diameter. 

 

 

Figure 73: Experimental data standard deviation of fade time, 20.6mm aperture diameter. 
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Even as aperture diameter is further increased, the curve shape continues to maintain its 

consistency. The largest of apertures sizes are presented in Figure 74, Figure 75, Figure 76, and 

Figure 77. It is useful to discuss these plots as a collective because they portray similar results. 

We further see the gamma-gamma standard deviation of fade time model is able to successfully 

fit the provided data. However, it is again problematic to use the large 𝛽𝑔𝑔  𝑚𝑠𝑞  values in the 

computation (𝛽𝑔𝑔  𝑚𝑠𝑞 > 8). In line with this, the predicted scintillation index 𝜍𝐼 𝑔𝑔𝑚𝑠𝑞
2  values in 

these plots are again larger than the experimentally measured scintillation index 𝜍𝐼 𝑚𝑒𝑎𝑠
2  values. 

 

Figure 74: Experimental data standard deviation of fade time, 55.0mm aperture diameter. 
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Figure 75: Experimental data standard deviation of fade time, 55.0mm aperture diameter. 

 

 

Figure 76: Experimental data standard deviation of fade time, 101.6mm aperture diameter. 



123 

 

 

Figure 77: Experimental data standard deviation of fade time, 154.0mm aperture diameter. 

 

As with mean fade time data, the standard deviation of fade time data were found to agree 

reasonably well with the experimental data. It has been pointed out that aperture averaging 

effects are not well encompassed within the gamma-gamma irradiance PDF model, and the 

influence of aperture averaging greatly affects the results of fade statistics. Data generally agree 

with theoretical predictions for aperture diameters of 20.6mm or less, and the data tend to deviate 

from the theoretical predictions for apertures of greater diameter. This is again attributed to the 

difficulty in computing the model with large values of 𝛽𝑔𝑔  𝑚𝑠𝑞 . 

 

It is observed that standard deviation in fade time can be as large as the mean fade time. This is 

thought to be an important observation as mean fade time is generally the main characteristic of 

the fade time distribution that is analyzed in the design of FSO communication systems [7, 10, 



124 

 

13, 34, 45]. Additionally, it is observed that the standard deviation in fade time can be 

theoretically determined given the mean fade time statistics. This is because the gamma-gamma 

model parameters 𝛼 and 𝛽 have been shown here to be somewhat consistent whether analyzing 

the PDF, mean fade time, or standard deviation of fade time. 

4.5 Sources of Inaccuracy in Analysis 

There are always non-deterministic factors introduced by measurements, whether they are 

expected or unexpected. The experiments presented in the analysis are no exception, and noise 

sources can be present within measurements. In our analysis, we will consider the following 

sources of error and address each individually: gamma-gamma PDF model inadequateness, 

aperture averaging, detector noise, sunlight irradiance, and error related to open-air operation. 

 

The gamma-gamma PDF model is known to be a competitive model in the prediction of 

irradiance received through atmospheric turbulence; however it does display exact behavior [7, 

12, 13, 45, 50]. The PDF is a model used to approximate a natural phenomenon, and therefore is 

always prone to predictive inaccuracy. Aperture averaging is an effect touched on within the 

gamma-gamma model, however not inherent within its modeled parameters. It is known that an 

increase in aperture size will decrease the received irradiance scintillation index 𝜍𝐼
2, and 

decreasing the aperture size will have the converse effect. An increase an aperture size will 

increase both gamma-gamma model parameters 𝛼 and 𝛽, however the small-scale scattering 

parameter 𝛽 will exhibit the more drastic increase of the pair. As either parameter approaches 

infinity, the gamma-gamma model asymptotically approaches a gamma model [7]. The gamma-

gamma model parameters (representing the number of large-scale scatterers 𝛼 and the number of 
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small-scale scatterers 𝛽) both impart an increasingly large sensitivity on gamma-gamma modeled 

scintillation index as either of the model parameters becomes less than unity. This will make 

gamma-gamma model estimation of the scintillation index difficult when either of the gamma-

gamma model parameters is small (𝛼, 𝛽 → 1). 

 

As for noise influencing the shape of the irradiance PDF, portions representing detector noise 

were analyzed. Because laser power was at its maximum of 800mW and the experiment was 

conducted on a 1km range, SNR was deemed sufficiently large enough to neglect noise 

contribution. These contributions turn out to represent a portion of the signal PDF well below 

any detected laser signal, especially when compared to background sunlight. In both the 

preliminary setup and measurements, the thermal noise was essentially washed out by detected 

background/sunlight irradiance noise. 

 

Since measurements were made during daytime hours, sunlight becomes an obvious contributor 

to detector noise in the form of in-band irradiance. Additionally, thermal cooling was not applied 

to the detector circuit although the detector was housed within an air-conditioned trailer (with the 

window open). Pointing inaccuracy (and even thermal expansion of optics) is also known to 

attribute a transmitter pointing mistake that is not correctable within the time frame of interest 

without additional compensation [1, 6, 10]. Stationarity of daytime conditions is also very 

difficult to achieve as the atmosphere‟s conditions generally change on the order of 30 minutes 

or less [4, 5]. 
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The amount of sunlight noise signal versus received laser signal is quantified in the following 

item. Measurement of background/sunlight signal were made roughly every ten minutes, and 

found not to change too drastically as most of the data were collected during the period 

approaching and directly after the sun‟s midday. The transmitting laser was operated at 

approximately maximum power to obtain the largest possible SNR at the receiver (system was 

not considered eye safe). In each of the data runs, the measured detector noise was found to be at 

least 45 dB below the mean value of received irradiance  𝐼 . In the PDF plots, this can be seen 

because a slight spike of probability is present in the lowest presented irradiance values. Mean 

fade time and standard deviations of fade time analysis are not as heavily influenced by such 

irradiance values because the most desired threshold irradiance 𝐼𝑇  values are many orders of 

magnitude larger. 
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5. CONCLUDING REMARKS 

We have discussed the results of the experimental data as presented in Section 4 

EXPERIMENTATION. This section will contribute as an expedited overview of the results 

presented in the aforementioned section. 

 

The probability density function (PDF) of the received irradiance data were found to compare 

sensibly well with the gamma-gamma irradiance PDF model. Aperture averaging attributes to a 

reduction in the received scintillation index 𝜍𝐼
2 as the aperture diameter 𝐷 is increased well 

beyond the spatial coherence length 𝜌𝑠𝑝 . In the PDF, aperture averaging can also be seen to have 

the effect of narrowing the irradiance distribution‟s range. 

 

Mean fade time of received irradiance were found to be agreeable with the results obtained in 

past experiments by other researchers. An increase in mean irradiance  𝐼  (or decrease in 

threshold irradiance 𝐼𝑇) was shown to reduce fade time, as would be expected. The effect of 

aperture averaging was presented and discussed. 

 

Variance (alternatively defined in terms of standard deviation) of received irradiance fade time 

data were found to agree well for smaller apertures where effects of aperture averaging are not 

present. When aperture averaging begins to become present, the gamma-gamma model small-

scale scattering parameter 𝛽 is known to contribute to the numerical instability seen in the model 

as its value will become large for the computations to follow. Given this hurdle, the experimental 

data matches the theoretically derived gamma-gamma variance in fade time expressions well 
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enough such that they can be considered agreeable. Future work may be done to approach or 

work around the pitfall in having a large value of 𝛽. 

 

In conclusion, we note the procedure presented in Section 3.2.3 Fade Time Statistics shall remain 

valid regardless of the PDF model utilized. For other future work it is suggested that a more 

appropriate PDF, with a heavier focus on aperture averaging, should be applied in studies of 

these fade statistics. Additionally one may find a more streamlined method of collecting 

irradiance data with a series of receiver aperture sizes to allow for more data under similar 

atmospheric conditions.
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APPENDIX A 

INTEGRAL APPROXIMATION OF GAMMA-GAMMA MEAN FADE 

TIME
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The modified Bessel function of the second kind 𝐾𝑣( ∙ ) is known to follow the integral 

relationship [44] 

  𝑤𝑣−1
∞

0

exp  −𝛼𝑤 −
𝛽

𝑤
  𝑑𝑤 = 2  

𝛽

𝛼
 

𝑣/2

𝐾𝑣 2 𝛼𝛽 , (A.1) 

where 𝑤 is a dummy variable, 𝛼 is the large scale gamma-gamma parameter, 𝛽 is the small scale 

gamma-gamma parameter. Plane wave expressions for large scale and small scale log-irradiance 

covariance functions were used to explore relations between 𝑏, 𝑏𝑥 , and 𝑏𝑦 . It was determined 

that 𝑏𝑦 ≫ 𝑏𝑥  and 𝑏 ≈ 𝑏𝑦  in the strong fluctuation regime. From this, the square root term in the 

integrand of 𝐴 𝛼, 𝛽, 𝐼𝑇  may be approximated as [10] 

  𝑏𝑥
2𝐼𝑇 + 𝑏𝑦

2𝑤2 = 𝑏𝑦𝑤 1 +
𝑏𝑥

2

𝑏𝑦
2

𝐼𝑇
𝑤2

≈ 𝑏𝑤, (A.2) 

where the approximations 𝑏 ≈ 𝑏𝑦  and 𝑏𝑥
2/𝑏𝑦

2 ≈ 0 were made from the previously stated 

observation. With this approximation, Equation (A.2) then becomes 

 𝐴 𝛼, 𝛽, 𝐼𝑇 𝐴𝑝𝑝𝑟𝑜𝑥 1 = 𝑏  𝑤𝛼−𝛽−1/2 exp  −𝛼𝑤 −
𝛽𝐼𝑇
𝑤

 
∞

0

 𝑑𝑤 (A.3) 

 = 2𝑏  
𝛽𝐼𝑇
𝛼

 

𝛼−𝛽
2

+
1
4

𝐾𝛼−𝛽 +1/2 2 𝛼𝛽𝐼𝑇 .  
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APPENDIX B 

RELATION OF GAMMA-GAMMA MODEL PARAMETERS TO 

MEASURED PARAMETERS
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This section details the calculation of gamma-gamma parameters from measured atmospheric 

parameters using spherical wave theory. The gamma-gamma PDF has two reciprocal parameters; 

𝛼  representing the number of large-scale scatterers observed by the aperture and 𝛽 representing 

the number of small-scale scatterers observed by the aperture. In practice three parameters are 

use to encompass the current atmospheric channel conditions: the refractive index structure 

parameter 𝐶𝑛
2, the inner scale of atmospheric turbulence 𝑙0, and the outer scale of atmospheric 

turbulence 𝐿0. Commercial instruments are capable of measuring 𝐶𝑛
2 and 𝑙0, and engineers have 

developed instrumentation to simultaneously measure 𝐿0 as well [7, 8, 31, 48, 49]. 

 

The total number of large-scale and small-scale scatterers may be written as 

 𝛼 =
1

𝜍𝑋
2 =

1

exp 𝜍ln 𝑋
2  − 1

, (B.1) 

 𝛽 =
1

𝜍𝑌
2 =

1

exp 𝜍ln 𝑌
2  − 1

,  

where 𝜍𝑋
2 and 𝜍𝑌

2 are the large-scale and small-sale scintillation indices, 𝜍ln 𝑋
2  and 𝜍ln 𝑌

2  are the 

respective log-irradiance scintillation indices. It will be the focus of this section to relate the 

gamma-gamma model parameters 𝛼 and  𝛽 to the model‟s measureable parameters 𝐶𝑛
2, 𝑙0, 

and 𝐿0. 

The Rytov variance is defined in the literature as [7, 13] 

 𝜍𝑅
2 = 1.23𝐶𝑛

2𝑘7/6𝐿11/6, (B.2) 

with 𝑘 being the wave number and 𝐿 representing the path length. For mathematical 

compatibility, the Rytov variance is defined differently with each optical wave model. The 

spherical wave Rytov variance is written as 
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 𝛽0
2 = 0.4𝜍𝑅

2 . (B.3) 

 

In the regime of weak irradiance fluctuations, the large-scale log-irradiance scintillation index 

has been derived as [7, 53] 

 

𝜍ln 𝑋
2  𝑙0 = 0.04𝛽0

2  
8.56𝑄𝑙

8.56 + 𝑄𝑙 + 0.20𝛽0
2𝑄𝑙

7/6
 

7/6

×  1 + 1.75  
8.56

8.56 + 𝑄𝑙 + 0.20𝛽0
2𝑄𝑙

7/6
 

1/2

− 0.25  
8.56

8.56 + 𝑄𝑙 + 0.20𝛽0
2𝑄𝑙

7/6
 

7/12

 , 

(B.4) 

where 

 𝑄𝑙 = 10.89𝐿/𝑘𝑙0
2. (B.7) 

In a somewhat similar manner, the small-scale log-irradiance scintillation index has been 

previously developed as [7, 53] 

 𝜍ln 𝑌
2 (𝑙0) =

0.51𝜍𝑆𝑃
2

 1 + 0.69𝜍𝑆𝑃
12/5 

5/6, (B.5) 

where 
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𝜍𝑆𝑃
2 ≅ 9.65𝛽0

2  0.40 1 + 9/𝑄𝑙 
11/12  sin  

11

6
tan−1

𝑄𝑙

3
 

+
2.61

 9 + 𝑄𝑙
2 1/4

sin  
4

3
tan−1

𝑄𝑙

3
 

−
0.52

 9 + 𝑄𝑙
2 7/24

sin  
5

4
tan−1

𝑄𝑙

3
  −

3.50

𝑄𝑙
5/6 , 

(B.6) 

It is important to note that this analysis is valid for the spherical optical wave model, in weak-

turbulence regime (𝜍𝐼
2 < 1), with an infinite outer-scale of turbulence (𝐿0 = ∞). 
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APPENDIX C 

NUMERICAL STABILITY OF GAMMA-GAMMA MEAN SQUARE FADE 

TIME EXPRESSIONS 
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This section will focus on the expression derived in Section 3.4.2 Mean Square Level Crossing 

Rate of Gamma-Gamma Distributed Irradiance. We start with Equation (3.87) for the mean 

square number of crossings of a gamma-gamma distributed irradiance, 

 

𝑛2   ≅  
4

𝜋
 
𝛼𝛽𝐼𝑇
 𝐼 

 
𝛼+𝛽

 
 
 
 
  𝐾𝛼−𝛽  2 

𝛼𝛽𝐼𝑇
 𝐼 

 

Γ 𝛼 Γ 𝛽 𝐼𝑇

 
 
 
 
 

2

, (C.1) 

where 𝛼 is the gamma-gamma model large-scale scattering parameter, 𝛽 is the gamma-gamma 

model small-scale scattering parameter, 𝐼𝑇  is the threshold irradiance level, and  𝐼 . Taking 

account of only the beginning term  𝛼𝛽𝐼𝑇/ 𝐼  𝛼+𝛽 , we notice the power that which the 

expression is raised  𝛼 + 𝛽 . We find a somewhat difficult situation arises, namely because of 

the 𝛼 and 𝛽 terms appearing in the power. This term has been found to be problematic in the 

presented analysis. 

 

The largest floating point number that can be successfully utilized in 64-bit MATLAB is 

approximately 1.7977 × 10308  decimal; this value is found by typing realmax into the 

MATLAB console. For argument we choose some typical parameters, 𝐼𝑇/ 𝐼 = 1, 𝛼 = 2 

and 𝛽 = 100. Putting these terms into the relation in C.1 we find 

  𝛼𝛽 𝛼+𝛽 =  200 102 ≅  5.0706 ∙ 10234, (C.2) 

which is beginning to approach the maximum computation limit. If were instead to choose 𝛼 =

8, it would be quickly found that MATLAB returns an answer of “Inf” (this is how the program 

signifies the maximum limit has been reached).  
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As such, care is taken to avoid combining large values of 𝛼 and 𝛽 in the data analysis. This is 

normally done by placing an upper bound on the size that which 𝛽 may become. Since the 

gamma-gamma PDF parameters are mathematically reciprocal in the model (one can be traded in 

place with the other), care must also be taken to ensure such that 𝛼 < 𝛽. One possible approach 

to calculating large values of this parameter would be to take a half power of the parameters 

(stored as separate numerical results in computation, i.e. separate double floating point variables) 

  𝛼𝛽 𝛼+𝛽 =  𝛼𝛽 
𝛼+𝛽

2  𝛼𝛽 
𝛼+𝛽

2 . (C.3) 

One would employ successive operations in a manner to maintain numerical limits, such as to 

multiply the half powered term by a smaller number within the equation first. This would only 

work if a term elsewhere is less than unity, such that each number could be reduced before it 

would have to be multiplied. The main idea would be to avoid the upper numerical limit of 

computation, known as the “ceiling” value (1.7977 × 10308  decimal, as case). 
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