57 research outputs found

    The rhodopsin-retinochrome system for retinal re-isomerization predates the origin of cephalopod eyes

    Get PDF
    Background: The process of photoreception in most animals depends on the light induced isomerization of the chromophore retinal, bound to rhodopsin. To re-use retinal, the all-trans-retinal form needs to be re-isomerized to 11-cis-retinal, which can be achieved in different ways. In vertebrates, this mostly includes a stepwise enzymatic process called the visual cycle. The best studied re-isomerization system in protostomes is the rhodopsin-retinochrome system of cephalopods, which consists of rhodopsin, the photoisomerase retinochrome and the protein RALBP functioning as shuttle for retinal. In this study we investigate the expression of the rhodopsin-retinochrome system and functional components of the vertebrate visual cycle in a polyplacophoran mollusk, Leptochiton asellus, and examine the phylogenetic distribution of the individual components in other protostome animals. Results: Tree-based orthology assignments revealed that orthologs of the cephalopod retinochrome and RALBP are present in mollusks outside of cephalopods. By mining our dataset for vertebrate visual cycle components, we also found orthologs of the retinoid binding protein RLBP1, in polyplacophoran mollusks, cephalopods and a phoronid. In situ hybridization and antibody staining revealed that L. asellus retinochrome is co-expressed in the larval chiton photoreceptor cells (PRCs) with the visual rhodopsin, RALBP and RLBP1. In addition, multiple retinal dehydrogenases are expressed in the PRCs, which might also contribute to the rhodopsin-retinochrome system. Conclusions: We conclude that the rhodopsin-retinochrome system is a common feature of mollusk PRCs and predates the origin of cephalopod eyes. Our results show that this system has to be extended by adding further components, which surprisingly, are shared with vertebrates.publishedVersio

    Molecular Phylogenetics of Thecata (Hydrozoa, Cnidaria) Reveals Long-Term Maintenance of Life History Traits despite High Frequency of Recent Character Changes

    Get PDF
    Two fundamental life cycle types are recognized among hydrozoan cnidarians, the benthic (generally colonial) polyp stage either producing pelagic sexual medusae or directly releasing gametes elaborated from an attached gonophore. The existence of intermediate forms, with polyps producing simple medusoids, has been classically considered compelling evidence in favor of phyletic gradualism. In order to gain insights about the evolution of hydrozoan life history traits, we inferred phylogenetic relationships of 142 species of Thecata (= Leptothecata, Leptomedusae), the most species-rich hydrozoan group, using 3 different ribosomal RNA markers (16S, 18S, and 28S). In conflict with morphology-derived classifications, most thecate species fell in 2 well-supported clades named here Statocysta and Macrocolonia. We inferred many independent medusa losses among Statocysta. Several instances of secondary regain of medusoids (but not of full medusa) from medusa-less ancestors were supported among Macrocolonia. Furthermore, life cycle character changes were significantly correlated with changes affecting colony shape. For both traits, changes did not reflect graded and progressive loss or gain of complexity. They were concentrated in recent branches, with intermediate character states being relatively short lived at a large evolutionary scale. This punctuational pattern supports the existence of 2 alternative stable evolutionary strategies: simple stolonal colonies with medusae (the ancestral strategy, seen in most Statocysta species) versus large complex colonies with fixed gonophores (the derived strategy, seen in most Macrocolonia species). Hypotheses of species selection are proposed to explain the apparent long-term stability of these life history traits despite a high frequency of character change. Notably, maintenance of the medusa across geological time in Statocysta might be due to higher extinction rates for species that have lost this dispersive stag

    Coevolution of the Tlx homeobox gene with medusa development (Cnidaria: Medusozoa)

    Get PDF
    Cnidarians display a wide diversity of life cycles. Among the main cnidarian clades, only Medusozoa possesses a swimming life cycle stage called the medusa, alternating with a benthic polyp stage. The medusa stage was repeatedly lost during medusozoan evolution, notably in the most diverse medusozoan class, Hydrozoa. Here, we show that the presence of the homeobox gene Tlx in Cnidaria is correlated with the presence of the medusa stage, the gene having been lost in clades that ancestrally lack a medusa (anthozoans, endocnidozoans) and in medusozoans that secondarily lost the medusa stage. Our characterization of Tlx expression indicate an upregulation of Tlx during medusa development in three distantly related medusozoans, and spatially restricted expression patterns in developing medusae in two distantly related species, the hydrozoan Podocoryna carnea and the scyphozoan Pelagia noctiluca. These results suggest that Tlx plays a key role in medusa development and that the loss of this gene is likely linked to the repeated loss of the medusa life cycle stage in the evolution of Hydrozoa

    An improved whole life cycle culture protocol for the hydrozoan genetic model Clytia hemisphaerica

    Get PDF
    The jellyfish species Clytia hemisphaerica (Cnidaria, Hydrozoa) has emerged as a new experimental model animal in the last decade. Favorable characteristics include a fully transparent body suitable for microscopy, daily gamete production and a relatively short life cycle. Furthermore, whole genome sequence assembly and efficient gene editing techniques using CRISPR/Cas9 have opened new possibilities for genetic studies. The quasi-immortal vegetatively-growing polyp colony stage provides a practical means to maintain mutant strains. In the context of developing Clytia as a genetic model, we report here an improved whole life cycle culture method including an aquarium tank system designed for culture of the tiny jellyfish form. We have compared different feeding regimes using Artemia larvae as food and demonstrate that the stage-dependent feeding control is the key for rapid and reliable medusa and polyp rearing. Metamorphosis of the planula larvae into a polyp colony can be induced efficiently using a new synthetic peptide. The optimized procedures detailed here make it practical to generate genetically modified Clytia strains and to maintain their whole life cycle in the laboratory

    RGM Regulates BMP-Mediated Secondary Axis Formation in the Sea Anemone Nematostella vectensis

    Get PDF
    Summary: Patterning of the metazoan dorsoventral axis is mediated by a complex interplay of BMP signaling regulators. Repulsive guidance molecule (RGM) is a conserved BMP coreceptor that has not been implicated in axis specification. We show that NvRGM is a key positive regulator of BMP signaling during secondary axis establishment in the cnidarian Nematostella vectensis. NvRGM regulates first the generation and later the shape of a BMP-dependent Smad1/5/8 gradient with peak activity on the side opposite the NvBMP/NvRGM/NvChordin expression domain. Full knockdown of Smad1/5/8 signaling blocks the formation of endodermal structures, the mesenteries, and the establishment of bilateral symmetry, while altering the gradient through partial NvRGM or NvBMP knockdown shifts the boundaries of asymmetric gene expression and the positioning of the mesenteries along the secondary axis. These findings provide insight into the diversification of axis specification mechanisms and identify a previously unrecognized role for RGM in BMP-mediated axial patterning. : Leclère and Rentzsch identify repulsive guidance molecule (RGM) as an essential regulator of the BMP morphogen gradient that controls the formation and patterning of the secondary body axis in the sea anemone Nematostella. The evolutionary conservation of RGM-BMP interactions indicates that this function might also be important for bilaterian embryogenesis

    Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration

    Get PDF
    International audienceThe ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2. Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de-and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process

    Identification of the polyp stage of three leptomedusa species using DNA barcoding

    Get PDF
    Peter Schuchert, Aino Hosia, Lucas Leclère (2017): Identification of the polyp stage of three leptomedusa species using DNA barcoding. Revue suisse de Zoologie 124 (1): 167-182, DOI: 10.5281/zenodo.32267

    The rhodopsin-retinochrome system for retinal re-isomerization predates the origin of cephalopod eyes

    No full text
    Background: The process of photoreception in most animals depends on the light induced isomerization of the chromophore retinal, bound to rhodopsin. To re-use retinal, the all-trans-retinal form needs to be re-isomerized to 11-cis-retinal, which can be achieved in different ways. In vertebrates, this mostly includes a stepwise enzymatic process called the visual cycle. The best studied re-isomerization system in protostomes is the rhodopsin-retinochrome system of cephalopods, which consists of rhodopsin, the photoisomerase retinochrome and the protein RALBP functioning as shuttle for retinal. In this study we investigate the expression of the rhodopsin-retinochrome system and functional components of the vertebrate visual cycle in a polyplacophoran mollusk, Leptochiton asellus, and examine the phylogenetic distribution of the individual components in other protostome animals. Results: Tree-based orthology assignments revealed that orthologs of the cephalopod retinochrome and RALBP are present in mollusks outside of cephalopods. By mining our dataset for vertebrate visual cycle components, we also found orthologs of the retinoid binding protein RLBP1, in polyplacophoran mollusks, cephalopods and a phoronid. In situ hybridization and antibody staining revealed that L. asellus retinochrome is co-expressed in the larval chiton photoreceptor cells (PRCs) with the visual rhodopsin, RALBP and RLBP1. In addition, multiple retinal dehydrogenases are expressed in the PRCs, which might also contribute to the rhodopsin-retinochrome system. Conclusions: We conclude that the rhodopsin-retinochrome system is a common feature of mollusk PRCs and predates the origin of cephalopod eyes. Our results show that this system has to be extended by adding further components, which surprisingly, are shared with vertebrates

    Hydrozoan insights in animal development and evolution

    No full text
    International audienceThe fresh water polyp Hydra provides textbook experimental demonstration of positional information gradients and regeneration processes. Developmental biologists are thus familiar with Hydra, but may not appreciate that it is a relatively simple member of the Hydrozoa, a group of mostly marine cnidarians with complex and diverse life cycles, exhibiting extensive phenotypic plasticity and regenerative capabilities. Hydrozoan species offer extensive opportunities to address many developmental mechanisms relevant across the animal kingdom. Here we review recent work from non‐Hydra hydrozoans – hydromedusae, hydroids and siphonophores – shedding light on mechanisms of oogenesis, embryonic patterning, allorecognition, stem cell regulation and regeneration. We also highlight potential research directions in which hydrozoan diversity can illuminate the evolution of developmental processes at micro‐ and macro‐evolutionary time scales
    corecore