313 research outputs found

    Effects of amantadine on circulating neurotransmitters in healthy subjects

    Get PDF
    Considering that glutamatergic axons innervate the C1(Ad) medullary nuclei, which are responsible for the excitation of the peripheral adrenal glands, we decided to investigate catecholamines (noradrenaline, adrenaline and dopamine) plus indolamines (plasma serotonin and platelet serotonin) at the blood level, before and after a small oral dose of amantadine, a selective NMDA antagonist. We found that the drug provoked a selective enhancement of noradrenaline plus a minimization of adrenaline, dopamine, plasma serotonin and platelet serotonin circulating levels. Significant enhancement of diastolic blood pressure plus reduction of systolic blood pressure and heart rate paralleled the circulating parameter changes. The above findings allow us to postulate that the drug was able to enhance the peripheral neural sympathetic activity. Minimization of both adrenal sympathetic and parasympathetic activities was also registered after the amantadine challenge. The above findings supported the postulation that this drug should be a powerful therapeutic tool for treating diseases affected by adrenal sympathetic hyperactivity

    Anorexia nervosa versus hyperinsulinism: therapeutic effects of neuropharmacological manipulation

    Get PDF
    Fuad Lechin1,2, Bertha van der Dijs1,2, Betty Pardey-Maldonado1, Scarlet Baez1, Marcel E Lechin31Sections of Neuroendocrinology, Neuropharmacology, and Neurochemistry, Department of Pathophysiology, Institute of Experimental Medicine, Faculty of Medicine, Universidad Central de Venezuela, Caracas; 2Instituto de Vias Digestivas Caracas, Centro Clínico Profesional Caracas, Venezuela; 3Department of Internal Medicine, Texas A & M Health Science Center, College of Medicine, Texas, USABackground: We have demonstrated that anorexia nervosa is underpinned by overwhelming adrenal sympathetic activity which abolishes the neural sympathetic branch of the peripheral autonomic nervous system. This physiological disorder is responsible for gastrointestinal hypomotility, hyperglycemia, raised systolic blood pressure, raised heart rate, and other neuroendocrine disorders. Therefore, we prescribed neuropharmacological therapy to reverse this central and autonomic nervous system disorder, in order to normalize the clinical and neuroendocrine profile.Methods: The study included 22 female patients with anorexia nervosa (10 restricted type, 12 binge-eating type) who received three months of treatment with amantadine 100 mg/day. We measured blood pressure, heart rate, and circulating neurotransmitters, (noradrenaline, adrenaline, dopamine, platelet serotonin, free plasma serotonin) during supine resting, one minute of orthostasis, and a five-minute exercise test before and after one, two, and three months of treatment with amantadine, a drug which abrogates adrenal sympathetic activity by acting at the C1(Ad) medullary nuclei responsible for this branch of the peripheral sympathetic activity.Results: We found the amantadine abolished symptoms of anorexia nervosa from the first oral dose onwards. Normalization of autonomic and cardiovascular parameters was demonstrated within the early days of therapy. Abrupt and sustained increases in the plasma noradrenaline:adrenaline ratio and disappearance of abnormal plasma glucose elevation were registered throughout the three-month duration of the trial. Significant and sustained increases in body weight were documented in all cases. No relapses were observed.Conclusion: We have confirmed our previously published findings showing that the anorexia nervosa syndrome depends on the hypomotility of the gastrointestinal tract plus hyperglycemia, both of which are triggered by adrenal sympathetic hyperactivity. The above neuroendocrine plus neuroautonomic and clinical disorders which underpinned anorexia nervosa were abruptly suppressed since the first oral dose of amantadine, a drug able to revert the C1(Ad) over A5(NA) pontomedullary predominance responsible for adrenal and neural sympathetic activity, respectively. Keywords: amantadine, anorexia nervosa, adrenal sympathetic activity, hyperglycemia, hyperinsulinism, neural sympathetic activit

    Trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane as a novel and efficient reagent for selective sulfoxidation of sulfides under catalyst-free condition

    Get PDF
    Application of trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane as an efficient and high-oxygen content reagent in selective oxidation of sulfides into sulfoxides has been successfully explored. The reactions proceeded under mild and catalyst-free conditions in dichloromethane at room temperature to provide the sulfoxides in excellent yields without any significant over-oxidation to sulfones

    5-Hydroxytryptamine Modulates Migration, Cytokine and Chemokine Release and T-Cell Priming Capacity of Dendritic Cells In Vitro and In Vivo

    Get PDF
    Beside its well described role in the central and peripheral nervous system 5-hydroxytryptamine (5-HT), commonly known as serotonin, is also a potent immuno-modulator. Serotoninergic receptors (5-HTR) are expressed by a broad range of inflammatory cell types, including dendritic cells (DCs). In this study, we aimed to further characterize the immuno-biological properties of serotoninergic receptors on human monocyte-derived DCs. 5-HT was able to induce oriented migration in immature but not in LPS-matured DCs via activation of 5-HTR1 and 5-HTR2 receptor subtypes. Accordingly, 5-HT also increased migration of pulmonary DCs to draining lymph nodes in vivo. By binding to 5-HTR3, 5-HTR4 and 5-HTR7 receptors, 5-HT up-regulated production of the pro-inflammatory cytokine IL-6. Additionally, 5-HT influenced chemokine release by human monocyte-derived DCs: production of the potent Th1 chemoattractant IP-10/CXCL10 was inhibited in mature DCs, whereas CCL22/MDC secretion was up-regulated in both immature and mature DCs. Furthermore, DCs matured in the presence of 5-HT switched to a high IL-10 and low IL-12p70 secreting phenotype. Consistently, 5-HT favoured the outcome of a Th2 immune response both in vitro and in vivo. In summary, our study shows that 5-HT is a potent regulator of human dendritic cell function, and that targeting serotoninergic receptors might be a promising approach for the treatment of inflammatory disorders

    The Role of Circulating Serotonin in the Development of Chronic Obstructive Pulmonary Disease

    Get PDF
    BACKGROUND: Cigarette smoking is a major risk factor in the development of age-related chronic obstructive pulmonary disease (COPD). The serotonin transporter (SERT) gene polymorphism has been reported to be associated with COPD, and the degree of cigarette smoking has been shown to be a significant mediator in this relationship. The interrelation between circulating serotonin (5-hydroxytyptamine, 5-HT), cigarette smoking and COPD is however largely unknown. The current study aimed at investigating the mediation effects of plasma 5-HT on cigarette smoking-induced COPD and the relation between plasma 5-HT levels and age. METHODS: The association between plasma 5-HT, age and COPD was analyzed in a total of 62 COPD patients (ever-smokers) and 117 control subjects (healthy non-smokers and ever-smokers). Plasma 5-HT levels were measured by enzyme-linked immuno assay (EIA). RESULTS: The elevated plasma 5-HT levels were significantly associated with increased odds for COPD (OR = 1.221, 95% CI = 1.123 to 1.319, p<0.0001). The effect remained significant after being adjusted for age and pack-years smoked (OR = 1.271, 95% CI = 1.134 to 1.408, p = 0.0003). Furthermore, plasma 5-HT was found to mediate the relation between pack-years smoked and COPD. A positive correlation (r = 0.303, p = 0.017) was found between plasma 5-HT levels and age in COPD, but not in the control subjects (r = -0.149, p = 0.108). CONCLUSION: Our results suggest that cigarette smoke-induced COPD is partially mediated by the plasma levels of 5-HT, and that these become elevated with increased age in COPD. The elevated plasma 5-HT levels in COPD might contribute to the pathogenesis of this disease.published_or_final_versio

    Functional polymorphisms in genes of the Angiotensin and Serotonin systems and risk of hypertrophic cardiomyopathy: AT1R as a potential modifier

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiotensin and serotonin have been identified as inducers of cardiac hypertrophy. DNA polymorphisms at the genes encoding components of the angiotensin and serotonin systems have been associated with the risk of developing cardiovascular diseases, including left ventricular hypertrophy (LVH).</p> <p>Methods</p> <p>We genotyped five polymorphisms of the <it>AGT</it>, <it>ACE</it>, <it>AT1R</it>, <it>5-HT2A</it>, and <it>5-HTT </it>genes in 245 patients with Hypertrophic Cardiomyopathy (HCM; 205 without an identified sarcomeric gene mutation), in 145 patients with LVH secondary to hypertension, and 300 healthy controls.</p> <p>Results</p> <p>We found a significantly higher frequency of <it>AT1R </it>1166 C carriers (CC+AC) among the HCM patients without sarcomeric mutations compared to controls (p = 0.015; OR = 1.56; 95%CI = 1.09-2.23). The <it>AT1R </it>1166 C was also more frequent among patients who had at least one affected relative, compared to sporadic cases. This allele was also associated with higher left ventricular wall thickness in both, HCM patients with and without sarcomeric mutations.</p> <p>Conclusions</p> <p>The 1166 C <it>AT1R </it>allele could be a risk factor for cardiac hypertrophy in patients without sarcomeric mutations. Other variants at the <it>AGT</it>, <it>ACE</it>, <it>5-HT2A </it>and <it>5-HTT </it>did not contribute to the risk of cardiac hypertrophy.</p

    Factors explaining variance in perceived pain in women with fibromyalgia

    Get PDF
    BACKGROUND: We hypothesized that a substantial proportion of the subjectively experienced variance in pain in fibromyalgia patients would be explained by psychological factors alone, but that a combined model, including neuroendocrine and autonomic factors, would give the most parsimonious explanation of variance in pain. METHODS: Psychometric assessment included McGill Pain Questionnaire, General Health Questionnaire, Hospital Anxiety and Depression Rating Scale, Eysenck personality Inventory, Neuroticism and Lie subscales, Toronto Alexithymia Scale, and Multidimensional Health Locus of Control Scale and was performed in 42 female patients with fibromyalgia and 48 female age matched random sample population controls. A subgroup of the original sample (22 fibromyalgia patients and 13 controls) underwent a pharmacological challenge test with buspirone to assess autonomic and adrenocortical reactivity to serotonergic challenge. RESULTS: Although fibromyalgia patients scored high on neuroticism, anxiety, depression and general distress, only a minor part of variance in pain was explained by psychological factors alone. High pain score was associated with high neuroticism, low baseline cortisol level and small drop in systolic blood pressure after buspirone challenge test. This model explained 41.5% of total pain in fibromyalgia patients. In population controls, psychological factors alone were significant predictors for variance in pain. CONCLUSION: Fibromyalgia patients may have reduced reactivity in the central sympathetic system or perturbations in the sympathetic-parasympathetic balance. This study shows that a biopsychosocial model, including psychological factors as well as factors related to perturbations of the autonomic nervous system and hypothalamic-pituitary-adrenal axis, is needed to explain perceived pain in fibromyalgia patients

    Stimulants and growth in children with attention-deficit/hyperactivity disorder

    Get PDF
    Initial suggestions that suppression of growth may be an intrinsic characteristic of attention-deficit/hyperactivitydisorder (ADHD) have now largely been disproven. Although controversy persists regarding the possible negative effect of adrenergic stimulants on growth in children with ADHD, the consensus that appears to be reached in the scientific literature is that stimulant usage may cause a manageable attenuation of growth in these children. Since it is known that stimulants increase the amount of dopamine and noradrenaline in the synapse, this writing suggests that these increases in dopamine and noradrenaline are responsible for the growth attenuation in these children. It appears that increased amounts of dopamine and noradrenaline have the ability to inhibit the secretion of growth hormone and growth-related hormones such as prolactin, thyroid hormones, sex hormones and insulin. Therefore, it would be reasonable to suggest that the increases in dopamine and noradrenaline caused by stimulant usage can disrupt the homeostasis of both growth hormone and growth-related hormones, generating the potential for the suppression of growth
    • …
    corecore