23 research outputs found

    Data from: Resource composition mediates the effects of intraspecific variability in nutrient recycling on ecosystem processes

    No full text
    Despite the growing evidence for individual variation in trophic niche within populations, its potential indirect effects on ecosystem processes remains poorly understood. In particular, few studies have investigated how intraspecific trophic variability can modulate the effects of consumers on ecosystems through potential changes in nutrient excretion rates. Here, we first quantified the level of intraspecific trophic variability in 11 wild populations of the omnivorous fish Lepomis gibbosus. Outputs from stomach content and stable isotope analyses revealed that the degree of trophic specialization and trophic positions were highly variable between and within these wild populations. There was intrapopulation variation in trophic position of more than one trophic level, suggesting that individuals consumed a range of plant and animal resources. We then experimentally manipulated intraspecific trophic variability to assess how it can modulate consumer-mediated nutrient effects on relevant processes of ecosystem functioning. Specifically, three food sources varying in nutrient quality (e.g. plant material, macro-invertebrate and fish meat) were used individually or in combination to simulate seven diet treatment. Results indicated that intraspecific variability in growth and nitrogen excretion rates were more related to the composition of the diet rather than the degree of specialization, and increased with the trophic position of the diet consumed. We subsequently used microcosms and showed that critical ecosystem functions, such as primary production and community respiration, were affected by the variability in excretory products, and this effect was biomass-dependent. These results highlight the importance of considering variation within species to better assess the effects of individuals on ecosystems and, more specifically, the effects of consumer-mediated nutrient recycling because the body size and the trophic ecology of individuals are affected by a large spectrum of natural and human-induced environmental changes

    Designing and demonstrating a Master student project to explore carbon dioxide capture technology

    No full text
    International audienceThe rise in carbon dioxide (CO2) concentration in the Earth's atmosphere, and the associated strengthening of the greenhouse effect, requires the development of low carbon technologies. New carbon capture processes are being developed to remove CO2 that would otherwise. be emitted from industrial processes and fossil fuel power stations. Given the increasing importance of this technology, we report on a new educational project, which is aimed to instill greater awareness of the role of CO2 in climate change while stimulating student interest in science, technology, engineering, and the environment. The project was carried out by master students, that is, Cool(L)Cap team, who contributed to the design and manufacture of a pilot plant that demonstrates the basic operation of an amine scrubbing plant. The main goal of. the project was to develop educational material and presentations for a range of audiences, from primary school to university students and academics. In this article, we present the project team's approach to design, commission, and deliver the pilot plant and educational material as well as the feedback received from 267 students from a primary school and a university. We provide additional information to enable other educators to recreate our pilot plant design

    miR-491-5p-induced apoptosis in ovarian carcinoma depends on the direct inhibition of both BCL-XL and EGFR leading to BIM activation

    No full text
    International audienceWe sought to identify miRNAs that can efficiently induce apoptosis in ovarian cancer cells by overcoming BCL-X(L) and MCL1 anti-apoptotic activity, using combined computational and experimental approaches. We found that miR-491-5p efficiently induces apoptosis in IGROV1-R10 cells by directly inhibiting BCL-X(L) expression and by inducing BIM accumulation in its dephosphorylated form. This latter effect is due to direct targeting of epidermal growth factor receptor (EGFR) by miR-491-5p and consequent inhibition of downstream AKT and MAPK signalling pathways. Induction of apoptosis by miR-491-5p in this cell line is mimicked by a combination of EGFR inhibition together with a BH3-mimetic molecule. In contrast, SKOV3 cells treated with miR-491-5p maintain AKT and MAPK activity, do not induce BIM and do not undergo cell death despite BCL-XL and EGFR downregulation. In this cell line, sensitivity to miR-491-5p is restored by inhibition of both AKT and MAPK signalling pathways. Altogether, this work highlights the potential of miRNA functional studies to decipher cell signalling pathways or major regulatory hubs involved in cell survival to finally propose the rationale design of new strategies on the basis of pharmacological combinations

    Revisited analysis of a SHIVA01 trial cohort using functional mutational analyses successfully predicted treatment outcome

    No full text
    It still remains to be demonstrated that using molecular profiling to guide therapy improves patient outcome in oncology. Classification of somatic variants is not straightforward, rendering treatment decisions based on variants with unknown significance (VUS) hard to implement. The oncogenic activity of VUS and mutations identified in 12 patients treated with molecularly targeted agents (MTAs) in the frame of SHIVA01 trial was assessed using Functional Annotation for Cancer Treatment (FACT). MTA response prediction was measured in vitro, blinded to the actual clinical trial results, and survival predictions according to FACT were correlated with the actual PFS of SHIVA01 patients. Patients with positive prediction had a median PFS of 5.8 months versus 1.7 months in patients with negative prediction (P < 0.05). Our results highlight the role of the functional interpretation of molecular profiles to predict MTA response

    Atelocollagen-mediated in vivo siRNA transfection in ovarian carcinoma is influenced by tumor site, siRNA target and administration route

    No full text
    International audienceOvarian cancer is the leading cause of death from gynecological malignancies worldwide, and innate or acquired chemoresistance of ovarian cancer cells is the major cause of therapeutic failure. It has been demonstrated that the concomitant inhibition of Bcl-x L and Mcl-1 anti-apoptotic activities is able to trigger apoptosis in chemoresistant ovarian cancer cells. In this context, siRNA-mediated Bcl-x L and Mcl-1 inhibition constitutes an appealing strategy by which to eliminate chemoresistant cancer cells. However, the safest and most efficient way to vectorize siRNAs in vivo is still under debate. In the present study, using in vivo bioluminescence imaging, we evaluated the interest of atelocollagen to vectorize siRNAs by intraperitoneal (i.p.) or intravenous (i.v.) administration in 2 xenografted ovarian cancer models (peritoneal carcinomatosis and subcutaneous tumors in nude mice). Whereas i.p. administration of atelocollagen-vectorized siRNA in the peritoneal carcinomatosis model did not induce any gene downregulation, a 70% transient downregulation of luciferase expression was achieved after i.v. injection of atelocollagen-vectorized siRNA in the subcutaneous (s.c.) model. However, the use of siRNA targeting Bcl-x L or Mcl-1 did not induce target-specific downregulation in vivo in nude mice. Our results therefore show that atelocollagen complex formulation, the administration route, tumor site and the identity of the siRNA target influence the efficiency of atelocollagen-mediated siRNA delivery

    MMP2 as an independent prognostic stratifier in oral cavity cancers

    No full text
    Background Around 25% of oral cavity squamous cell carcinoma (OCSCC) are not controlled by the standard of care, but there is currently no validated biomarker to identify those patients. Our objective was to determine a robust biomarker for severe OCSCC, using a biology-driven strategy. Patients and methods Tumor and juxtatumor secretome were analyzed in a prospective discovery cohort of 37 OCSCC treated by primary surgery. Independent biomarker validation was performed by RTqPCR in a retrospective cohort of 145 patients with similar clinical features. An 18-gene signature (18 G) predictive of the response to PD-1 blockade was evaluated in the same cohort. Results Among 29 deregulated molecules identified in a secretome analysis, including chemokines, cytokines, growth factors, and molecules related to tumor growth and tissue remodeling, only soluble MMP2 was a prognostic biomarker. In our validation cohort, high levels of MMP2 and CD276, and low levels of CXCL10 and STAT1 mRNA were associated with poor prognosis in univariate analysis (Kaplan-Meier). MMP2 (p = .001) and extra-nodal extension (ENE) (p = .006) were independent biomarkers of disease-specific survival (DSS) in multivariate analysis and defined prognostic groups with 5-year DSS ranging from 36% (MMP2highENE+) to 88% (MMP2lowENE-). The expression of 18 G was similar in the different prognostic groups, suggesting comparable responsiveness to anti-PD-1. Conclusion High levels of MMP2 were an independent and validated prognostic biomarker, surpassing other molecules of a large panel of the tumor and immune-related processes, which may be used to select poor prognosis patients for intensified neoadjuvant or adjuvant regimens
    corecore