460 research outputs found
A method to characterize the different extreme waves for islands exposed to various wave regimes: a case study devoted to Reunion Island
This paper outlines a new approach devoted to the analysis of extreme waves in presence of several wave regimes. It entails discriminating the different wave regimes from offshore wave data using classification algorithms, before conducting the extreme wave analysis for each regime separately. The concept is applied to the pilot site of Reunion Island which is affected by three main wave regimes: southern waves, trade-wind waves and cyclonic waves. Several extreme wave scenarios are determined for each regime, based on real historical cases (for cyclonic waves) and extreme value analysis (for non-cyclonic waves). For each scenario, the nearshore wave characteristics are modelled all around Reunion Island and the linear theory equations are used to back calculate the equivalent deep-water wave characteristics for each portion of the coast. The relative exposure of the coastline to the extreme waves of each regime is determined by comparing the equivalent deep-water wave characteristics. <br><br> This method provides a practical framework to perform an analysis of extremes within a complex environment presenting several sources of extreme waves. First, at a particular coastal location, it allows for inter-comparison between various kinds of extreme waves that are generated by different processes and that may occur at different periods of the year. Then, it enables us to analyse the alongshore variability in wave exposition, which is a good indicator of potential runup extreme values. For the case of Reunion Island, cyclonic waves are dominant offshore around the island, with equivalent deep-water wave heights up to 18 m for the northern part. Nevertheless, due to nearshore wave refraction, southern waves may become as energetic as cyclonic waves on the western part of the island and induce similar impacts in terms of runup and submersion. This method can be easily transposed to other case studies and can be adapted, depending on the data availability
A Spitzer Study of Comets 2P/Encke, 67P/Churyumov-Gerasimenko, and C/2001 HT50 (LINEAR-NEAT)
We present infrared images and spectra of comets 2P/Encke,
67P/Churyumov-Gerasimenko, and C/2001 HT50 (LINEAR-NEAT) as part of a larger
program to observe comets inside of 5 AU from the sun with the Spitzer Space
Telescope. The nucleus of comet 2P/Encke was observed at two vastly different
phase angles (20 degrees and 63 degrees). Model fits to the spectral energy
distributions of the nucleus suggest comet Encke's infrared beaming parameter
derived from the near-Earth asteroid thermal model may have a phase angle
dependence. The observed emission from comet Encke's dust coma is best-modeled
using predominately amorphous carbon grains with a grain size distribution that
peaks near 0.4 microns, and the silicate contribution by mass to the sub-micron
dust coma is constrained to 31%. Comet 67P/Churyumov-Gerasimenko was observed
with distinct coma emission in excess of a model nucleus at a heliocentric
distance of 5.0 AU. The coma detection suggests that sublimation processes are
still active or grains from recent activity remain near the nucleus. Comet
C/2001 HT50 (LINEAR-NEAT) showed evidence for crystalline silicates in the
spectrum obtained at 3.2 AU and we derive a silicate-to-carbon dust ratio of
0.6. The ratio is an order of magnitude lower than that derived for comets
9P/Tempel 1 during the Deep Impact encounter and C/1995 O1 (Hale-Bopp).Comment: Accepted for publication in the Astrophysical Journal 48 pages, 15
figures, 10 table
The chemical diversity of comets
A fundamental question in cometary science is whether the different dynamical
classes of comets have different chemical compositions, which would reflect
different initial conditions. From the ground or Earth orbit, radio and
infrared spectroscopic observations of a now significant sample of comets
indeed reveal deep differences in the relative abundances of cometary ices.
However, no obvious correlation with dynamical classes is found. Further
results come, or are expected, from space exploration. Such investigations, by
nature limited to a small number of objects, are unfortunately focussed on
short-period comets (mainly Jupiter-family). But these in situ studies provide
"ground truth" for remote sensing. We discuss the chemical differences in
comets from our database of spectroscopic radio observations, which has been
recently enriched by several Jupiter-family and Halley-type comets.Comment: In press in Earth, Moon and Planets (proceedings of the workshop
"Future Ground-based Solar System Research: Synergies with Space Probes and
Space Telescopes", Portoferraio, Isola d'Elba, Livorno (Italy), 8-12
September 2008). 6 pages with 2 figure
Radioelectric Field Features of Extensive Air Showers Observed with CODALEMA
Based on a new approach to the detection of radio transients associated with
extensive air showers induced by ultra high energy cosmic rays, the
experimental apparatus CODALEMA is in operation, measuring about 1 event per
day corresponding to an energy threshold ~ 5. 10^16 eV. Its performance makes
possible for the first time the study of radio-signal features on an
event-by-event basis. The sampling of the magnitude of the electric field along
a 600 meters axis is analyzed. It shows that the electric field lateral spread
is around 250 m (FWHM). The possibility to determine with radio both arrival
directions and shower core positions is discussed.Comment: Accepted for publication in Astroparticle Physic
An active dipole for cosmic ray radiodetection with CODALEMA
A paraître dans NIM AInternational audienceThe CODALEMA experiment detects the electromagnetic pulses radiated during the development of Extensive Air Showers (EAS). Since 2005, in addition to spiral log-periodic antennas, ultra broad bandwidth active dipoles have been designed to detect the full electric pulse shape of these signals. A few performances of these new detectors are presented
Nanodust detection near 1 AU from spectral analysis of Cassini/RPWS radio data
Nanodust grains of a few nanometer in size are produced near the Sun by
collisional break-up of larger grains and picked-up by the magnetized solar
wind. They have so far been detected at 1 AU by only the two STEREO spacecraft.
Here we analyze the spectra measured by the radio and plasma wave instrument
onboard Cassini during the cruise phase close to Earth orbit; they exhibit
bursty signatures similar to those observed by the same instrument in
association to nanodust stream impacts on Cassini near Jupiter. The observed
wave level and spectral shape reveal impacts of nanoparticles at about 300
km/s, with an average flux compatible with that observed by the radio and
plasma wave instrument onboard STEREO and with the interplanetary flux models
A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite I. The observational data
Spectral line surveys are useful since they allow identification of new
molecules and new lines in uniformly calibrated data sets. Nonetheless, large
portions of the sub-millimetre spectral regime remain unexplored due to severe
absorptions by H2O and O2 in the terrestrial atmosphere. The purpose of the
measurements presented here is to cover wavelength regions at and around 0.55
mm -- regions largely unobservable from the ground. Using the Odin
astronomy/aeronomy satellite, we performed the first spectral survey of the
Orion KL molecular cloud core in the bands 486--492 and 541--576 GHz with
rather uniform sensitivity (22--25 mK baseline noise). Odin's 1.1 m size
telescope, equipped with four cryo-cooled tuneable mixers connected to broad
band spectrometers, was used in a satellite position-switching mode. Two mixers
simultaneously observed different 1.1 GHz bands using frequency steps of 0.5
GHz (25 hours each). An on-source integration time of 20 hours was achieved for
most bands. The entire campaign consumed ~1100 orbits, each containing one hour
of serviceable astro-observation. We identified 280 spectral lines from 38
known interstellar molecules (including isotopologues) having intensities in
the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart
from the ground state rotational 1(1,0)--1(0,1) transitions of ortho-H2O, H218O
and H217O, the high energy 6(2,4)--7(1,7) line of para-H2O and the
HDO(2,0,2--1,1,1) line have been observed, as well as the 1,0--0,1 lines from
NH3 and its rare isotopologue 15NH3. We suggest assignments for some
unidentified features, notably the new interstellar molecules ND and SH-.
Severe blends have been detected in the line wings of the H218O, H217O and 13CO
lines changing the true linewidths of the outflow emission.Comment: 21 pages, 10 figures, 7 tables, accepeted for publication in
Astronomy and Astrophysics 30 August 200
Radio emission of extensive air shower at CODALEMA: Polarization of the radio emission along the v*B vector
Cosmic rays extensive air showers (EAS) are associated with transient radio
emission, which could provide an efficient new detection method of high energy
cosmic rays, combining a calorimetric measurement with a high duty cycle. The
CODALEMA experiment, installed at the Radio Observatory in Nancay, France, is
investigating this phenomenon in the 10^17 eV region. One challenging point is
the understanding of the radio emission mechanism. A first observation
indicating a linear relation between the electric field produced and the cross
product of the shower axis with the geomagnetic field direction has been
presented (B. Revenu, this conference). We will present here other strong
evidences for this linear relationship, and some hints on its physical origin.Comment: Contribution to the 31st International Cosmic Ray Conference, Lodz,
Poland, July 2009. 4 pages, 8 figures. v2: Typo fixed, arxiv references adde
First detection of NH3 (1,0 - 0,0) from a low mass cloud core: On the low ammonia abundance of the rho Oph A core
Odin has successfully observed the molecular core rho Oph A in the 572.5 GHz
rotational ground state line of ammonia, NH3 (J,K = 1,0 - 0,0). The
interpretation of this result makes use of complementary molecular line data
obtained from the ground (C17O and CH3OH) as part of the Odin preparatory work.
Comparison of these observations with theoretical model calculations of line
excitation and transfer yields a quite ordinary abundance of methanol, X(CH3OH)
= 3e-9. Unless NH3 is not entirely segregated from C17O and CH3OH, ammonia is
found to be significantly underabundant with respect to typical dense core
values, viz. X(NH3) = 8e-10.Comment: 4 pages, 2 figures, 2 tables, to appear in Astron. Astrophys. Letter
- …