402 research outputs found

    An organotypic slice culture to study the formation of calyx of Held synapses in-vitro.

    Get PDF
    The calyx of Held, a large axo-somatic relay synapse containing hundreds of presynaptic active zones, is possibly the largest nerve terminal in the mammalian CNS. Studying its initial growth in-vitro might provide insights into the specification of synaptic connection size in the developing brain. However, attempts to maintain calyces of Held in organotypic cultures have not been fruitful in past studies. Here, we describe an organotypic slice culture method in which calyces of Held form in-vitro. We made coronal brainstem slices with an optimized slice angle using newborn mice in which calyces have not yet formed; the presynaptic bushy cells were genetically labeled using the Math5 promoter. After six to nine days of culturing, we readily observed large Math5-positive nerve terminals in the medial nucleus of the trapezoid body (MNTB), but not in the neighboring lateral superior olive nucleus (LSO). These calyx-like synapses expressed the Ca2+- sensor Synaptotagmin-2 (Syt-2) and the Ca2+ binding protein Parvalbumin (PV), two markers of developing calyces of Held in vivo. Application of the BMP inhibitor LDN-193189 significantly inhibited the growth of calyx synapses, demonstrating the feasibility of long-term pharmacological manipulation using this organotypic culture method. These experiments provide a method for organotypic culturing of calyces of Held, and show that the formation of calyx-like synapses onto MNTB neurons can be preserved in-vitro. Furthermore, our study adds pharmacological evidence for a role of BMP-signaling in the formation of large calyx of Held synapses

    Ena/VASP function in retinal axons is required for terminal arborization but not pathway navigation

    Get PDF
    The Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins is required for filopodia formation in growth cones and plays a crucial role in guidance cue-induced remodeling of the actin cytoskeleton. In vivo studies with pharmacological inhibitors of actin polymerization have previously provided evidence for the view that filopodia are needed for growth cone navigation in the developing visual pathway. Here we have re-examined this issue using an alternative strategy to generate growth cones without filopodia in vivo by artificially targeting Xena/XVASP (Xenopus homologs of Ena/VASP) proteins to mitochondria in retinal ganglion cells (RGCs). We used the specific binding of the EVH1 domain of the Ena/VASP family of proteins with the ligand motif FP4 to sequester the protein at the mitochondria surface. RGCs with reduced function of Xena/XVASP proteins extended fewer axons out of the eye and possessed dynamic lamellipodial growth cones missing filopodia that advanced slowly in the optic tract. Surprisingly, despite lacking filopodia, the axons navigated along the optic pathway without obvious guidance errors, indicating that the Xena/XVASP family of proteins and filopodial protrusions are non-essential for pathfinding in retinal axons. However, depletion of Xena/XVASP proteins severely impaired the ability of growth cones to form branches within the optic tectum, suggesting that this protein family, and probably filopodia, plays a key role in establishing terminal arborizations

    Nkx2.1 regulates the generation of telencephalic astrocytes during embryonic development.

    Get PDF
    The homeodomain transcription factor Nkx2.1 (NK2 homeobox 1) controls cell differentiation of telencephalic GABAergic interneurons and oligodendrocytes. Here we show that Nkx2.1 also regulates astrogliogenesis of the telencephalon from embryonic day (E) 14.5 to E16.5. Moreover we identify the different mechanisms by which Nkx2.1 controls the telencephalic astrogliogenesis. In Nkx2.1 knockout (Nkx2.1 <sup>-/-</sup> ) mice a drastic loss of astrocytes is observed that is not related to cell death. Further, in vivo analysis using BrdU incorporation reveals that Nkx2.1 affects the proliferation of the ventral neural stem cells that generate early astrocytes. Also, in vitro neurosphere assays showed reduced generation of astroglia upon loss of Nkx2.1, which could be due to decreased precursor proliferation and possibly defects in glial specification/differentiation. Chromatin immunoprecipitation analysis and in vitro co-transfection studies with an Nkx2.1-expressing plasmid indicate that Nkx2.1 binds to the promoter of glial fibrillary acidic protein (GFAP), primarily expressed in astrocytes, to regulate its expression. Hence, Nkx2.1 controls astroglial production spatiotemporally in embryos by regulating proliferation of the contributing Nkx2.1-positive precursors

    New pool of cortical interneuron precursors in the early postnatal dorsal white matter.

    Get PDF
    The migration of cortical γ-aminobutyric acidergic interneurons has been extensively studied in rodent embryos, whereas few studies have documented their postnatal migration. Combining in vivo analysis together with time-lapse imaging on cortical slices, we explored the origin and migration of cortical interneurons during the first weeks of postnatal life. Strikingly, we observed that a large pool of GAD65-GFP-positive cells accumulate in the dorsal white matter region during the first postnatal week. Part of these cells divides and expresses the transcription factor paired box 6 indicating the presence of local transient amplifying precursors. The vast majority of these cells are immature interneurons expressing the neuronal marker doublecortin and partly the calcium-binding protein calretinin. Time-lapse imaging reveals that GAD65-GFP-positive neurons migrate from the white matter pool into the overlying anterior cingulate cortex (aCC). Some interneurons in the postnatal aCC express the same immature neuronal markers suggesting ongoing migration of calretinin-positive interneurons. Finally, bromodeoxyuridine incorporation experiments confirm that a small fraction of interneurons located in the aCC are generated during the early postnatal period. These results altogether reveal that at postnatal ages, the dorsal white matter contains a pool of interneuron precursors that divide and migrate into the aCC

    New Pool of Cortical Interneuron Precursors in the Early Postnatal Dorsal White Matter

    Get PDF
    The migration of cortical γ-aminobutyric acidergic interneurons has been extensively studied in rodent embryos, whereas few studies have documented their postnatal migration. Combining in vivo analysis together with time-lapse imaging on cortical slices, we explored the origin and migration of cortical interneurons during the first weeks of postnatal life. Strikingly, we observed that a large pool of GAD65-GFP-positive cells accumulate in the dorsal white matter region during the first postnatal week. Part of these cells divides and expresses the transcription factor paired box 6 indicating the presence of local transient amplifying precursors. The vast majority of these cells are immature interneurons expressing the neuronal marker doublecortin and partly the calcium-binding protein calretinin. Time-lapse imaging reveals that GAD65-GFP-positive neurons migrate from the white matter pool into the overlying anterior cingulate cortex (aCC). Some interneurons in the postnatal aCC express the same immature neuronal markers suggesting ongoing migration of calretinin-positive interneurons. Finally, bromodeoxyuridine incorporation experiments confirm that a small fraction of interneurons located in the aCC are generated during the early postnatal period. These results altogether reveal that at postnatal ages, the dorsal white matter contains a pool of interneuron precursors that divide and migrate into the aC

    Gli3 Controls Corpus Callosum Formation by Positioning Midline Guideposts During Telencephalic Patterning

    Get PDF
    The corpus callosum (CC) represents the major forebrain commissure connecting the 2 cerebral hemispheres. Midline crossing of callosal axons is controlled by several glial and neuronal guideposts specifically located along the callosal path, but it remains unknown how these cells acquire their position. Here, we show that the Gli3 hypomorphic mouse mutant Polydactyly Nagoya (Pdn) displays agenesis of the CC and mislocation of the glial and neuronal guidepost cells. Using transplantation experiments, we demonstrate that agenesis of the CC is primarily caused by midline defects. These defects originate during telencephalic patterning and involve an up-regulation of Slit2 expression and altered Fgf and Wnt/β-catenin signaling. Mutations in sprouty1/2 which mimic the changes in these signaling pathways cause a disorganization of midline guideposts and CC agenesis. Moreover, a partial recovery of midline abnormalities in Pdn/Pdn;Slit2−/− embryos mutants confirms the functional importance of correct Slit2 expression levels for callosal development. Hence, Gli3 controlled restriction of Fgf and Wnt/β-catenin signaling and of Slit2 expression is crucial for positioning midline guideposts and callosal developmen

    Nkx2.1-derived astrocytes and neurons together with Slit2 are indispensable for anterior commissure formation.

    Get PDF
    Guidepost cells present at and surrounding the midline provide guidance cues that orient the growing axons through commissures. Here we show that the transcription factor Nkx2.1 known to control the specification of GABAergic interneurons also regulates the differentiation of astroglia and polydendrocytes within the mouse anterior commissure (AC). Nkx2.1-positive glia were found to originate from three germinal regions of the ventral telencephalon. Nkx2.1-derived glia were observed in and around the AC region by E14.5. Thereafter, a selective cell ablation strategy showed a synergistic role of Nkx2.1-derived cells, both GABAergic interneurons and astroglia, towards the proper formation of the AC. Finally, our results reveal that the Nkx2.1-regulated cells mediate AC axon guidance through the expression of the repellent cue, Slit2. These results bring forth interesting insights about the spatial and temporal origin of midline telencephalic glia, and highlight the importance of neurons and astroglia towards the formation of midline commissures

    Clinical bioinformatics for microbial genomics and metagenomics:an ESCMID Postgraduate Technical Workshop

    Get PDF
    The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) workshop on genomics and metagenomics was held in Lausanne from 9th to 12th September 2019. As many as 68 participants from 20 countries from all 5 continents participated to this postgraduate technical workshop. During 4 days, the participants shared their time between conferences on various topics related to the implementation of genomics and metagenomics in a clinical diagnostic laboratory. These included talks from the clinics and talks from bioinformatic experts. A significant time was also dedicated to practicals covering various aspects of the data analysis of NGS sequences (quality check, annotation of virulence and antibiotic resistance genes, taxonomic assignment of amplicons, strain typing, …). This ESCMID meeting co-organized by A Lebrand and G Greub, with the help of the European Study Group for Genomics ad Molecular Diagnostics (ESGMD) provided a unique opportunity to exchange knowledge and ideas on the most recent bioinformatic approaches, as well as how to report such NGS results in diagnostic laboratories. This meeting report summarizes the key messages of this meeting

    Abundant Occurrence of Basal Radial Glia in the Subventricular Zone of Embryonic Neocortex of a Lissencephalic Primate, the Common Marmoset Callithrix jacchus

    Get PDF
    Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor typ
    corecore