294 research outputs found

    Spinodal Decomposition in Binary Gases

    Full text link
    We carried out three-dimensional simulations, with about 1.4 million particles, of phase segregation in a low density binary fluid mixture, described mesoscopically by energy and momentum conserving Boltzmann-Vlasov equations. Using a combination of Direct Simulation Monte Carlo(DSMC) for the short range collisions and a version of Particle-In-Cell(PIC) evolution for the smooth long range interaction, we found dynamical scaling after the ratio of the interface thickness(whose shape is described approximately by a hyperbolic tangent profile) to the domain size is less than ~0.1. The scaling length R(t) grows at late times like t^alpha, with alpha=1 for critical quenches and alpha=1/3 for off-critical ones. We also measured the variation of temperature, total particle density and hydrodynamic velocity during the segregation process.Comment: 11 pages, Revtex, 4 Postscript figures, submitted to PR

    Slow Relaxation and Phase Space Properties of a Conservative System with Many Degrees of Freedom

    Full text link
    We study the one-dimensional discrete Φ4\Phi^4 model. We compare two equilibrium properties by use of molecular dynamics simulations: the Lyapunov spectrum and the time dependence of local correlation functions. Both properties imply the existence of a dynamical crossover of the system at the same temperature. This correlation holds for two rather different regimes of the system - the displacive and intermediate coupling regimes. Our results imply a deep connection between slowing down of relaxations and phase space properties of complex systems.Comment: 14 pages, LaTeX, 10 Figures available upon request (SF), Phys. Rev. E, accepted for publicatio

    Clusters and Fluctuations at Mean-Field Critical Points and Spinodals

    Full text link
    We show that the structure of the fluctuations close to spinodals and mean-field critical points is qualitatively different than the structure close to non-mean-field critical points. This difference has important implications for many areas including the formation of glasses in supercooled liquids. In particular, the divergence of the measured static structure function in near-mean-field systems close to the glass transition is suppressed relative to the mean-field prediction in systems for which a spatial symmetry is broken.Comment: 5 pages, 1 figur

    Model for Glass Transition in a Binary fluid from a Mode Coupling approach

    Get PDF
    We consider the Mode Coupling Theory (MCT) of Glass transition for a Binary fluid. The Equations of Nonlinear Fluctuating Hydrodynamics are obtained with a proper choice of the slow variables corresponding to the conservation laws. The resulting model equations are solved in the long time limit to locate the dynamic transition. The transition point from our model is considerably higher than predicted in existing MCT models for binary systems. This is in agreement with what is seen in Computer Simulation of binary fluids. fluids.Comment: 9 Pages, 3 Figure

    An Alternative Interpretation of Statistical Mechanics

    Get PDF
    In this paper I propose an interpretation of classical statistical mechanics that centers on taking seriously the idea that probability measures represent complete states of statistical mechanical systems. I show how this leads naturally to the idea that the stochasticity of statistical mechanics is associated directly with the observables of the theory rather than with the microstates (as traditional accounts would have it). The usual assumption that microstates are representationally significant in the theory is therefore dispensable, a consequence which suggests interesting possibilities for developing non-equilibrium statistical mechanics and investigating inter-theoretic answers to the foundational questions of statistical mechanics

    Asymptotic laws for tagged-particle motion in glassy systems

    Full text link
    Within the mode-coupling theory for structural relaxation in simple systems the asymptotic laws and their leading-asymptotic correction formulas are derived for the motion of a tagged particle near a glass-transition singularity. These analytic results are compared with numerical ones of the equations of motion evaluated for a tagged hard sphere moving in a hard-sphere system. It is found that the long-time part of the two-step relaxation process for the mean-squared displacement can be characterized by the α\alpha -relaxation-scaling law and von Schweidler's power-law decay while the critical-decay regime is dominated by the corrections to the leading power-law behavior. For parameters of interest for the interpretations of experimental data, the corrections to the leading asymptotic laws for the non-Gaussian parameter are found to be so large that the leading asymptotic results are altered qualitatively by the corrections. Results for the non-Gaussian parameter are shown to follow qualitatively the findings reported in the molecular-dynamics-simulations work by Kob and Andersen [Phys. Rev. E 51, 4626 (1995)]

    Generalized entropy and temperature in nuclear multifragmentation

    Get PDF
    In the framework of a 2D Vlasov model, we study the time evolution of the "coarse-grained" Generalized Entropy (GE) in a nuclear system which undergoes a multifragmentation (MF) phase transition. We investigate the GE both for the gas and the fragments (surface and bulk part respectively). We find that the formation of the surface causes the growth of the GE during the process of fragmentation. This quantity then characterizes the MF and confirms the crucial role of deterministic chaos in filling the new available phase-space: at variance with the exact time evolution, no entropy change is found when the linear response is applied. Numerical simulations were used also to extract information about final temperatures of the fragments. From a fitting of the momentum distribution with a Fermi-Dirac function we extract the temperature of the fragments at the end of the process. We calculate also the gas temperature by averaging over the available phase space. The latter is a few times larger than the former, indicating a gas not in equilibrium. Though the model is very schematic, this fact seems to be very general and could explain the discrepancy found in experimental data when using the slope of light particles spectra instead of the double ratio of isotope yields method in order to extract the nuclear caloric curve.Comment: 26 pages, 9 postscript figures included, Revtex, some figures and part of text changed, version accepted for publication in PR

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d3d \ge 3, these pathologies occur in a full neighborhood {β>β0,h<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.

    Dynamics and transport near quantum-critical points

    Full text link
    The physics of non-zero temperature dynamics and transport near quantum-critical points is discussed by a detailed study of the O(N)-symmetric, relativistic, quantum field theory of a N-component scalar field in dd spatial dimensions. A great deal of insight is gained from a simple, exact solution of the long-time dynamics for the N=1 d=1 case: this model describes the critical point of the Ising chain in a transverse field, and the dynamics in all the distinct, limiting, physical regions of its finite temperature phase diagram is obtained. The N=3, d=1 model describes insulating, gapped, spin chain compounds: the exact, low temperature value of the spin diffusivity is computed, and compared with NMR experiments. The N=3, d=2,3 models describe Heisenberg antiferromagnets with collinear N\'{e}el correlations, and experimental realizations of quantum-critical behavior in these systems are discussed. Finally, the N=2, d=2 model describes the superfluid-insulator transition in lattice boson systems: the frequency and temperature dependence of the the conductivity at the quantum-critical coupling is described and implications for experiments in two-dimensional thin films and inversion layers are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical properties of unconventional magnetic systems", Geilo, Norway, April 2-12, 1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be published. 46 page

    Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions

    Full text link
    We evaluate the virial coefficients B_k for k<=10 for hard spheres in dimensions D=2,...,8. Virial coefficients with k even are found to be negative when D>=5. This provides strong evidence that the leading singularity for the virial series lies away from the positive real axis when D>=5. Further analysis provides evidence that negative virial coefficients will be seen for some k>10 for D=4, and there is a distinct possibility that negative virial coefficients will also eventually occur for D=3.Comment: 33 pages, 12 figure
    corecore