Abstract

We carried out three-dimensional simulations, with about 1.4 million particles, of phase segregation in a low density binary fluid mixture, described mesoscopically by energy and momentum conserving Boltzmann-Vlasov equations. Using a combination of Direct Simulation Monte Carlo(DSMC) for the short range collisions and a version of Particle-In-Cell(PIC) evolution for the smooth long range interaction, we found dynamical scaling after the ratio of the interface thickness(whose shape is described approximately by a hyperbolic tangent profile) to the domain size is less than ~0.1. The scaling length R(t) grows at late times like t^alpha, with alpha=1 for critical quenches and alpha=1/3 for off-critical ones. We also measured the variation of temperature, total particle density and hydrodynamic velocity during the segregation process.Comment: 11 pages, Revtex, 4 Postscript figures, submitted to PR

    Similar works

    Full text

    thumbnail-image

    Available Versions