11 research outputs found

    Screening of natural Wolbachia infection in mosquitoes (Diptera: Culicidae) from the Cape Verde islands

    Get PDF
    Funding Information: We are grateful to the National Institute of Public Health for the laboratory support in Cape Verde, and to technicians from the Ministry of Health for their assistance in field work. We would like to thank Prof. Paulo Almeida for providing DNA controls of Cx. pipiens and Cx. quinquefasciatus used in the species identification PCR assay. Funding Information: This work was funded by national funds through FCT—Fundação para a Ciência e Tecnologia, I.P., within the framework of the project ARBOMONITOR (PTDC/BIA-OUT/29477/2017. Aires da Moura was funded by the Ph.D. fellowship program of Camões I.P. Publisher Copyright: © 2023, The Author(s).Background: Wolbachia pipientis is an endosymbiont bacterium that induces cytoplasmic incompatibility and inhibits arboviral replication in mosquitoes. This study aimed to assess Wolbachia prevalence and genetic diversity in different mosquito species from Cape Verde. Methods: Mosquitoes were collected on six islands of Cape Verde and identified to species using morphological keys and PCR-based assays. Wolbachia was detected by amplifying a fragment of the surface protein gene (wsp). Multilocus sequence typing (MLST) was performed with five housekeeping genes (coxA, gatB, ftsZ, hcpA, and fbpA) and the wsp hypervariable region (HVR) for strain identification. Identification of wPip groups (wPip-I to wPip-V) was performed using PCR–restriction fragment length polymorphism (RFLP) assay on the ankyrin domain gene pk1. Results: Nine mosquito species were collected, including the major vectors Aedes aegypti, Anopheles arabiensis, Culex pipiens sensu stricto, and Culex quinquefasciatus. Wolbachia was only detected in Cx. pipiens s.s. (100% prevalence), Cx. quinquefasciatus (98.3%), Cx. pipiens/quinquefasciatus hybrids (100%), and Culex tigripes (100%). Based on the results of MLST and wsp hypervariable region typing, Wolbachia from the Cx. pipiens complex was assigned to sequence type 9, wPip clade, and supergroup B. PCR/RFLP analysis revealed three wPip groups in Cape Verde, namely wPip-II, wPip-III, and wPip-IV. wPip-IV was the most prevalent, while wPip-II and wPip-III were found only on Maio and Fogo islands. Wolbachia detected in Cx. tigripes belongs to supergroup B, with no attributed MLST profile, indicating a new strain of Wolbachia in this mosquito species. Conclusions: A high prevalence and diversity of Wolbachia was found in species from the Cx. pipiens complex. This diversity may be related to the mosquito's colonization history on the Cape Verde islands. To the best of our knowledge, this is the first study to detect Wolbachia in Cx. tigripes, which may provide an additional opportunity for biocontrol initiatives. publishersversionpublishe

    Laboratory quality improvement project (ProMeQuaLab): One Health in Portuguese-speaking Countries

    Get PDF
    A abordagem de “Uma só Saúde” é essencial para identificar, monitorizar, controlar, prevenir e erradicar as doenças transmissíveis entre o homem e os animais, permitindo uma vigilância epidemiológica eficaz. A qualidade dos dados de diagnóstico laboratorial de doenças de origem humana e ani- mal, é imprescindível para a vigilância epidemiológica de base laboratorial eficaz das zoonoses. O ProMeQuaLab (Projeto da Melhoria da Qualidade Laboratorial) visa a ca- pacitação de técnicos no diagnóstico laboratorial, para avaliação, monitori- zação e otimização do desempenho das metodologias utilizadas, de modo a gerar informação harmonizada, padronizada e comparável, que possa ser partilhada para ser avaliada epidemiologicamente. As atividades na área clínica humana já realizadas neste projeto desde 2015, foram alargadas à área veterinária desde 2023, com planeamento de aplica- ção de questionários para caracterizar os laboratórios veterinários, avaliar o seu nível de implementação do controlo da qualidade, identificar necessida- des de formação, e implementar melhoria da capacidade instalada e forma- ção de profissionais. Os documentos já produzidos e os profissionais já formados no âmbito das atividades do ProMeQuaLab serão multiplicadores do conhecimento para aplicação na área veterinária. Promover “Uma Só Saúde” exige ampliar oportunidades de formação e profis- sionais no diagnóstico laboratorial, fortalecendo laboratórios para oferecer ser- viços de alta qualidade e contribuir para promoção da saúde humana e animal.The One-Health approach is essential to identify, monitor, control, prevent and eradicate diseases communicable between humans and animals, enabling effective epidemiological surveillance. The quality of laboratory diagnostic data for diseases of human and animal origin is essential for effective laboratory-based epidemiological surveillance of zoonoses. ProMeQuaLab (Laboratory Quality Improvement Project) aims to train technicians in laboratory diagnosis to evaluate, monitor and optimize the performance of the methodologies used, in order to generate harmonized, standardized and comparable information, which can be shared for epidemiological investigation. Activities in the human clinical area already carried out in this project since 2015, have been extended to the veterinary area since 2023, with planning to apply questionnaires to characterize veterinary laboratories, evaluate their level of implementation of quality control, identify training needs, and implement improvements in installed capacity and training of professionals. The technical and scientific documents already produced and the profes- sionals already trained within the scope of ProMeQuaLab activities will be multipliers of knowledge for application in the veterinary field. Promoting One Health requires expanding training opportunities and professio- nals in laboratory diagnosis, strengthening laboratories to offer high-quality services contributing to the promotion of human and animal health.info:eu-repo/semantics/publishedVersio

    Drug resistance profile and clonality of Plasmodium falciparum parasites in Cape Verde: the 2017 malaria outbreak.

    Get PDF
    BACKGROUND: Cape Verde is an archipelago located off the West African coast and is in a pre-elimination phase of malaria control. Since 2010, fewer than 20 Plasmodium falciparum malaria cases have been reported annually, except in 2017, when an outbreak in Praia before the rainy season led to 423 autochthonous cases. It is important to understand the genetic diversity of circulating P. falciparum to inform on drug resistance, potential transmission networks and sources of infection, including parasite importation. METHODS: Enrolled subjects involved malaria patients admitted to Dr Agostinho Neto Hospital at Praia city, Santiago island, Cape Verde, between July and October 2017. Neighbours and family members of enrolled cases were assessed for the presence of anti-P. falciparum antibodies. Sanger sequencing and real-time PCR was used to identify SNPs in genes associated with drug resistance (e.g., pfdhfr, pfdhps, pfmdr1, pfk13, pfcrt), and whole genome sequencing data were generated to investigate the population structure of P. falciparum parasites. RESULTS: The study analysed 190 parasite samples, 187 indigenous and 3 from imported infections. Malaria cases were distributed throughout Praia city. There were no cases of severe malaria and all patients had an adequate clinical and parasitological response after treatment. Anti-P. falciparum antibodies were not detected in the 137 neighbours and family members tested. No mutations were detected in pfdhps. The triple mutation S108N/N51I/C59R in pfdhfr and the chloroquine-resistant CVIET haplotype in the pfcrt gene were detected in almost all samples. Variations in pfk13 were identified in only one sample (R645T, E668K). The haplotype NFD for pfmdr1 was detected in the majority of samples (89.7%). CONCLUSIONS: Polymorphisms in pfk13 associated with artemisinin-based combination therapy (ACT) tolerance in Southeast Asia were not detected, but the majority of the tested samples carried the pfmdr1 haplotype NFD and anti-malarial-associated mutations in the the pfcrt and pfdhfr genes. The first whole genome sequencing (WGS) was performed for Cape Verdean parasites that showed that the samples cluster together, have a very high level of similarity and are close to other parasites populations from West Africa

    Additional file 1 of Screening of natural Wolbachia infection in mosquitoes (Diptera: Culicidae) from the Cape Verde islands

    No full text
    Additional file 1: Table S1. Primer sequences used for molecular identification of mosquito species collected in Cape Verde islands. Table S2. Primers used for PCR detection of Wolbachia and genotyping of wPip I–V groups by PCR-RFLP. Table S3. Primers used for Wolbachia MLST loci and wsp hypervariable region amplification and sequence analysis

    Use of Envelope Domain III Protein for the Detection of IgG Type Antibodies Specific to Zika Virus by Indirect ELISA

    No full text
    Zika virus (ZIKV) diagnostics are crucial for proper antenatal and postnatal care and also for surveillance and serosurvey studies. Since the viremia during ZIKV infection is fleeting, serological testing is highly valuable to inform diagnosis. However, current serology tests using whole virus antigens frequently suffer from cross reactivity issues, delays, and technical complexity, especially in low and middle income countries (LMICs) and endemic countries. Here, we describe an indirect ELISA to detect specific IgG antibodies using the ZIKV envelope domain III (EDIII) protein expressed in Drosophila S2 cells as an immunogen. Using a total of 367 clinical samples, we showed that the EDIII-ELISA was able to detect IgG antibodies against ZIKV with high sensitivity of 100.0% and specificity of 94.7% when compared to plaque reduction neutralization tests (PRNTs) as the gold standard and using 0.208 as the cut-off OD value. These results show the usefulness of the recombinant envelope domain III as an alternative to standard whole virus proteins for ZIKV diagnostics as it improves the sensitivity and specificity of IgG ELISA assay when used as an immunogen. This method should, therefore, be extended to serological diagnostic techniques for other members of the flavivirus genus and for use in IgM diagnostic testing

    Use of Envelope Domain III Protein for the Detection of IgG Type Antibodies Specific to Zika Virus by Indirect ELISA

    No full text
    International audienceZika virus (ZIKV) diagnostics are crucial for proper antenatal and postnatal care and also for surveillance and serosurvey studies. Since the viremia during ZIKV infection is fleeting, serological testing is highly valuable to inform diagnosis. However, current serology tests using whole virus antigens frequently suffer from cross reactivity issues, delays, and technical complexity, especially in low and middle income countries (LMICs) and endemic countries. Here, we describe an indirect ELISA to detect specific IgG antibodies using the ZIKV envelope domain III (EDIII) protein expressed in Drosophila S2 cells as an immunogen. Using a total of 367 clinical samples, we showed that the EDIII-ELISA was able to detect IgG antibodies against ZIKV with high sensitivity of 100.0% and specificity of 94.7% when compared to plaque reduction neutralization tests (PRNTs) as the gold standard and using 0.208 as the cut-off OD value. These results show the usefulness of the recombinant envelope domain III as an alternative to standard whole virus proteins for ZIKV diagnostics as it improves the sensitivity and specificity of IgG ELISA assay when used as an immunogen. This method should, therefore, be extended to serological diagnostic techniques for other members of the flavivirus genus and for use in IgM diagnostic testing

    Use of Envelope Domain III Protein for the Detection of IgG Type Antibodies Specific to Zika Virus by Indirect ELISA

    No full text
    Zika virus (ZIKV) diagnostics are crucial for proper antenatal and postnatal care and also for surveillance and serosurvey studies. Since the viremia during ZIKV infection is fleeting, serological testing is highly valuable to inform diagnosis. However, current serology tests using whole virus antigens frequently suffer from cross reactivity issues, delays, and technical complexity, especially in low and middle income countries (LMICs) and endemic countries. Here, we describe an indirect ELISA to detect specific IgG antibodies using the ZIKV envelope domain III (EDIII) protein expressed in Drosophila S2 cells as an immunogen. Using a total of 367 clinical samples, we showed that the EDIII-ELISA was able to detect IgG antibodies against ZIKV with high sensitivity of 100.0% and specificity of 94.7% when compared to plaque reduction neutralization tests (PRNTs) as the gold standard and using 0.208 as the cut-off OD value. These results show the usefulness of the recombinant envelope domain III as an alternative to standard whole virus proteins for ZIKV diagnostics as it improves the sensitivity and specificity of IgG ELISA assay when used as an immunogen. This method should, therefore, be extended to serological diagnostic techniques for other members of the flavivirus genus and for use in IgM diagnostic testing
    corecore