305 research outputs found

    Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.

    Get PDF
    Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy

    Vesiculation of Red Blood Cells in the Blood Bank: A Multi-Omics Approach towards Identification of Causes and Consequences

    Get PDF
    Microvesicle generation is an integral part of the aging process of red blood cells in vivo and in vitro. Extensive vesiculation impairs function and survival of red blood cells after transfusion, and microvesicles contribute to transfusion reactions. The triggers and mechanisms of microvesicle generation are largely unknown. In this study, we combined morphological, immunochemical, proteomic, lipidomic, and metabolomic analyses to obtain an integrated understanding of the mechanisms underlying microvesicle generation during the storage of red blood cell concentrates. Our data indicate that changes in membrane organization, triggered by altered protein conformation, constitute the main mechanism of vesiculation, and precede changes in lipid organization. The resulting selective accumulation of membrane components in microvesicles is accompanied by the recruitment of plasma proteins involved in inflammation and coagulation. Our data may serve as a basis for further dissection of the fundamental mechanisms of red blood cell aging and vesiculation, for identifying the cause-effect relationship between blood bank storage and transfusion complications, and for assessing the role of microvesicles in pathologies affecting red blood cells.</jats:p

    Discovery of Rare Variants via Sequencing: Implications for the Design of Complex Trait Association Studies

    Get PDF
    There is strong evidence that rare variants are involved in complex disease etiology. The first step in implicating rare variants in disease etiology is their identification through sequencing in both randomly ascertained samples (e.g., the 1,000 Genomes Project) and samples ascertained according to disease status. We investigated to what extent rare variants will be observed across the genome and in candidate genes in randomly ascertained samples, the magnitude of variant enrichment in diseased individuals, and biases that can occur due to how variants are discovered. Although sequencing cases can enrich for casual variants, when a gene or genes are not involved in disease etiology, limiting variant discovery to cases can lead to association studies with dramatically inflated false positive rates

    Red Blood Cell Homeostasis: Pharmacological Interventions to Explore Biochemical, Morphological and Mechanical Properties.

    Get PDF
    Duringtheirpassagethroughthecirculation,redbloodcells(RBCs)encounterseverephysiologicalconditionsconsistingofmechanicalstress,oxidativedamageandfastchangesinionicandosmoticconditions.Inordertosurvivefor120days,RBCsadapttotheirsurroundingsbysubtleregulationofmembraneorganizationandmetabolism.RBChomeostasisdependsoninteractionsbetweentheintegralmembraneproteinband3withothermembraneandcytoskeletalproteins,andwithkeyenzymesofvariousmetabolicpathways.Theseinteractionsareregulatedbythebindingofdeoxyhemoglobintoband3,andbyasignalingnetworkrevolvingaroundLynkinaseandSrcfamilykinase-mediatedphosphorylationofband3.Hereweshowthatmanipulationoftheinteractionbetweenthelipidbilayerandthecytoskeleton,usingvariouspharmacologicalagentsthatinterferewithprotein-proteininteractionsandmembranelipidorganization,hasvariouseffectson:(1)morphology,asshownbyhighresolutionmicroscopyandquantitativeimageanalysis;(2)organizationofmembraneproteins,asindicatedbyimmunofluorescenceconfocalmicroscopyandquantitativeaswellasqualitativeanalysisofvesiclegeneration;(3)membranelipidorganization,asindicatedbyflowcytometricanalysisofphosphatidylserineexposure;(4)deformability,asassessedincapillary-mimickingcircumstancesusingamicrofluidicssystem;(5)deformabilityasdeterminedusingaspleen-mimickingdevice;(6)metabolicactivityasindicatedbymetabolomics.Ourdatashowthatthereisacomplexrelationshipbetweenredcellmorphology,membraneorganizationanddeformability.Also,ourdatashowthatredbloodcellshavearelativelyhighresistancetodisturbanceofmembraneorganizationinvitro,whichmayreflecttheircapacitytowithstandmechanical,oxidativeandosmoticstressinvivo

    A Novel Adaptive Method for the Analysis of Next-Generation Sequencing Data to Detect Complex Trait Associations with Rare Variants Due to Gene Main Effects and Interactions

    Get PDF
    There is solid evidence that rare variants contribute to complex disease etiology. Next-generation sequencing technologies make it possible to uncover rare variants within candidate genes, exomes, and genomes. Working in a novel framework, the kernel-based adaptive cluster (KBAC) was developed to perform powerful gene/locus based rare variant association testing. The KBAC combines variant classification and association testing in a coherent framework. Covariates can also be incorporated in the analysis to control for potential confounders including age, sex, and population substructure. To evaluate the power of KBAC: 1) variant data was simulated using rigorous population genetic models for both Europeans and Africans, with parameters estimated from sequence data, and 2) phenotypes were generated using models motivated by complex diseases including breast cancer and Hirschsprung's disease. It is demonstrated that the KBAC has superior power compared to other rare variant analysis methods, such as the combined multivariate and collapsing and weight sum statistic. In the presence of variant misclassification and gene interaction, association testing using KBAC is particularly advantageous. The KBAC method was also applied to test for associations, using sequence data from the Dallas Heart Study, between energy metabolism traits and rare variants in ANGPTL 3,4,5 and 6 genes. A number of novel associations were identified, including the associations of high density lipoprotein and very low density lipoprotein with ANGPTL4. The KBAC method is implemented in a user-friendly R package

    Transcutaneous flow related variables measured in vivo: the effects of gender

    Get PDF
    BACKGOUND: The identification of potential sources of error is a crucial step for any new assessment technique. This is the case for transcutaneous variables, such as flow and arterial gases, which have been applied as functional indicators of various aspects of human health. Regarding gender, a particular subject-related determinant, it is often claimed that women present higher transcutaneous oxygen pressure (tcpO(2)) values than men. However, the statistical significance of this finding is still uncertain. METHODS: The haemodynamical-vascular response to a local reactive hyperaemia procedure (the tourniquet cuff manoeuvre) was studied in two previously selected group of volunteers (n = 16; 8 women and 8 men). The effect of gender was assessed under standardised experimental conditions, using the transcutaneous flow-related variables tcpO(2)-tcpCO(2) and Laser-doppler Flowmetry (LDF). RESULTS: Regarding tcpO(2), statistically significant differences between genders were not found, although higher values were consistently found for the gases in the female group. Regarding LDF, high statistically significant differences (p < 0.005) were found, with the men's group presenting the highest values and variability. Other derived parameters used to characterise the vascular response following the cuff-deflation (t-peak) were similar in both groups. CONCLUSIONS: The relative influence of gender was not clearly demonstrated using these experimental conditions. However the gender-related LDF differences suggest that further investigation should be done on this issue. Perhaps in the presence of certain pathological disparities involving peripheral vascular regulation, other relationships may be found between these variables

    Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF

    Get PDF
    Mesenchymal stem cells (MSCs) have been used for cell-based therapies in regenerative medicine, with increasing importance in central and peripheral nervous system repair. However, MSCs grafting present disadvantages, such as, a high number of cells required for transplantation and low survival rate when transplanted into the central nervous system (CNS). In line with this, MSCs secretome which present on its composition a wide range of molecules (neurotrophins, cytokines) and microvesicles, can be a solution to surpass these problems. However, the effect of MSCs secretome in axonal elongation is poorly understood. In this study, we demonstrate that application of MSCs secretome to both rat cortical and hippocampal neurons induces an increase in axonal length. In addition, we show that this growth effect is axonal intrinsic with no contribution from the cell body. To further understand which are the molecules required for secretome-induced axonal outgrowth effect, we depleted brain-derived neurotrophic factor (BDNF) from the secretome. Our results show that in the absence of BDNF, secretome-induced axonal elongation effect is lost and that axons present a reduced axonal growth rate. Altogether, our results demonstrate that MSCs secretome is able to promote axonal outgrowth in CNS neurons and this effect is mediated by BDNF.European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme under project CENTRO-01–0145-FEDER-000008:BrainHealth 2020, and through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation and Portuguese national funds via FCT – Fundação para a Ciência e a Tecnologia, I.P., under projects PTDC/SAU-NEU/104100/2008, EXPL/NEU-NMC/0541/2012 and UID/NEU/04539/2013. This work was also funded by Marie Curie Actions - International reintegration grant #249288, 7th Framework programme, EU. Partially funded by Prémios Santa Casa Neurociências - Prize Melo e Castro for Spinal Cord Injury Research; Portuguese Foundation for Science and Technology (IF Development Grant to A.J.S.); NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme; by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by national funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145-FEDER-007038. The authors would also like to acknowledge Prof. J.E. Davies from the Institute of Biomaterials and Biomedical Engineering at the University of Toronto, Canada, for kindly providing some of the HUCPVCs lots used in the present workinfo:eu-repo/semantics/publishedVersio

    Treatment of Helminth Co-Infection in Individuals with HIV-1: A Systematic Review of the Literature

    Get PDF
    Many people living in areas of the world most affected by the HIV/AIDS pandemic are also exposed to other common infections. Parasitic infections with helminths (intestinal worms) are common in Africa and affect over half of the population in some areas. There are plausible biological reasons why treating helminth infections in people with HIV may slow down the progression of HIV to AIDS. Thus, treating people with HIV for helminths in areas with a high prevalence of both HIV and helminth infections may be a feasible strategy to help people with HIV delay progression of their disease or initiation of antiretroviral therapy. After a comprehensive review of the available literature, we conclude that there is not enough evidence to determine whether treating helminth infections in people with HIV is beneficial

    A Population Genetic Approach to Mapping Neurological Disorder Genes Using Deep Resequencing

    Get PDF
    Deep resequencing of functional regions in human genomes is key to identifying potentially causal rare variants for complex disorders. Here, we present the results from a large-sample resequencing (n = 285 patients) study of candidate genes coupled with population genetics and statistical methods to identify rare variants associated with Autism Spectrum Disorder and Schizophrenia. Three genes, MAP1A, GRIN2B, and CACNA1F, were consistently identified by different methods as having significant excess of rare missense mutations in either one or both disease cohorts. In a broader context, we also found that the overall site frequency spectrum of variation in these cases is best explained by population models of both selection and complex demography rather than neutral models or models accounting for complex demography alone. Mutations in the three disease-associated genes explained much of the difference in the overall site frequency spectrum among the cases versus controls. This study demonstrates that genes associated with complex disorders can be mapped using resequencing and analytical methods with sample sizes far smaller than those required by genome-wide association studies. Additionally, our findings support the hypothesis that rare mutations account for a proportion of the phenotypic variance of these complex disorders

    The NAMPT inhibitor FK866 reverts the damage in spinal cord injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emerging data implicate nicotinamide phosphoribosyl transferase (NAMPT) in the pathogenesis of cancer and inflammation. NAMPT inhibitors have proven beneficial in inflammatory animal models of arthritis and endotoxic shock as well as in autoimmune encephalitis. Given the role of inflammatory responses in spinal cord injury (SCI), the effect of NAMPT inhibitors was examined in this setting.</p> <p>Methods</p> <p>We investigated the effects of the NAMPT inhibitor FK866 in an experimental compression model of SCI.</p> <p>Results</p> <p>Twenty-four hr following induction of SCI, a significant functional deficit accompanied widespread edema, demyelination, neuron loss and a substantial increase in TNF-α, IL-1β, PAR, NAMPT, Bax, MPO activity, NF-κB activation, astrogliosis and microglial activation was observed. Meanwhile, the expression of neurotrophins BDNF, GDNF, NT3 and anti-apoptotic Bcl-2 decreased significantly. Treatment with FK866 (10 mg/kg), the best known and characterized NAMPT inhibitor, at 1 h and 6 h after SCI rescued motor function, preserved perilesional gray and white matter, restored anti-apoptotic and neurotrophic factors, prevented the activation of neutrophils, microglia and astrocytes and inhibited the elevation of NAMPT, PAR, TNF-α, IL-1β, Bax expression and NF-κB activity.</p> <p>We show for the first time that FK866, a specific inhibitor of NAMPT, administered after SCI, is capable of reducing the secondary inflammatory injury and partly reduce permanent damage. We also show that NAMPT protein levels are increased upon SCI in the perilesional area which can be corrected by administration of FK866.</p> <p>Conclusions</p> <p>Our findings suggest that the inflammatory component associated to SCI is the primary target of these inhibitors.</p
    corecore