148 research outputs found

    Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms

    Get PDF
    The diversity of arbuscular mycorrhizal (AM) fungi was investigated in an unfertilized limestone grassland soil supporting different synthesized vascular plant assemblages that had developed for 3 yr. The experimental treatments comprised: bare soil; monocultures of the nonmycotrophic sedge Carex flacca; monocultures of the mycotrophic grass Festuca ovina; and a species-rich mixture of four forbs, four grasses and four sedges. The diversity of AM fungi was analysed in roots of Plantago lanceolata bioassay seedlings using terminal-restriction fragment length polymorphism (T-RFLP). The extent of AM colonization, shoot biomass and nitrogen and phosphorus concentrations were also measured. The AM diversity was affected significantly by the floristic composition of the microcosms and shoot phosphorus concentration was positively correlated with AM diversity. The diversity of AM fungi in P. lanceolata decreased in the order: bare soil > C. flacca > 12 species > F. ovina. The unexpectedly high diversity in the bare soil and sedge monoculture likely reflects differences in the modes of colonization and sources of inoculum in these treatments compared with the assemblages containing established AM-compatible plants

    Electrode-induced lattice distortions in GaAs multi-quantum-dot arrays

    Full text link
    Copyright © Materials Research Society 2019. Increasing the number of quantum bits while preserving precise control of their quantum electronic properties is a significant challenge in materials design for the development of semiconductor quantum computing devices. Semiconductor heterostructures can host multiple quantum dots that are electrostatically defined by voltages applied to an array of metallic nanoelectrodes. The structural distortion of multiple-quantum-dot devices due to elastic stress associated with the electrodes has been difficult to predict because of the large micrometer-scale overall sizes of the devices, the complex spatial arrangement of the electrodes, and the sensitive dependence of the magnitude and spatial variation of the stress on processing conditions. Synchrotron X-ray nanobeam Bragg diffraction studies of a GaAs/AlGaAs heterostructure reveal the magnitude and nanoscale variation of these distortions. Investigations of individual linear electrodes reveal lattice tilts consistent with a 28-MPa compressive residual stress in the electrodes. The angular magnitude of the tilts varies by up to 20% over distances of less than 200 nm along the length of the electrodes, consistent with heterogeneity in the metal residual stress. A similar variation of the crystal tilt is observed in multiple-quantum-dot devices, due to a combination of the variation of the stress and the complex electrode arrangement. The heterogeneity in particular can lead to significant challenges in the scaling of multiple-quantum-dot devices due to differences between the charging energies of dots and uncertainty in the potential energy landscape. Alternatively, if incorporated in design, stress presents a new degree of freedom in device fabrication

    Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms

    Get PDF
    Rate variation in genes from all three genomes has been observed frequently in plant lineages with a parasitic and mycoheterotrophic mode of life. While the loss of photosynthetic ability leads to a relaxation of evolutionary constraints in genes involved in the photosynthetic apparatus, it remains to be determined how prevalent increased substitution rates are in nuclear DNA of non-photosynthetic angiosperms. In this study we infer rates of molecular evolution of 18S rDNA of all parasitic and mycoheterotorphic plant families (except Lauraceae and Polygalaceae) using relative rate tests. In several holoparasitic and mycoheterotrophic plant lineages extremely high substitution rates are observed compared to other photosynthetic angiosperms. The position and frequency of these substitutions have been identified to understand the mutation dynamics of 18S rRNA in achlorophyllous plants. Despite the presence of significantly elevated substitution rates, very few mutations occur in major functional and structural regions of the small ribosomal molecule, providing evidence that the efficiency of the translational apparatus in non-photosynthetic plants has not been affected

    Structure of the St. Louis encephalitis virus postfusion envelope trimer

    Get PDF
    St. Louis encephalitis virus (SLEV) is a mosquito-borne flavivirus responsible for several human encephalitis outbreaks over the last 80 years. Mature flavivirus virions are coated with dimeric envelope (E) proteins that mediate attachment and fusion with host cells. E is a class II fusion protein, the hallmark of which is a distinct dimer-to-trimer rearrangement that occurs upon endosomal acidification and insertion of hydrophobic fusion peptides into the endosomal membrane. Herein, we report the crystal structure of SLEV E in the posfusion trimer conformation. The structure revealed specific features that differentiate SLEV E from trimers of related flavi- and alphaviruses. SLEV E fusion loops have distinct intermediate spacing such that they are positioned further apart than previously observed in flaviviruses but closer together than Semliki Forest virus, an alphavirus. Domains II and III (DII and DIII) of SLEV E also adopt different angles relative to DI, which suggests that the DI-DII joint may accommodate spheroidal motions. However, trimer interfaces are well conserved among flaviviruses, so it is likely the differences observed represent structural features specific to SLEV function. Analysis of surface potentials revealed a basic platform underneath flavivirus fusion loops that may interact with the anionic lipid head groups found in membranes. Taken together, these results highlight variations in E structure and assembly that may direct virus-specific interactions with host determinants to influence pathogenesis

    The Relationship between Anthropometry and Split Performance in Recreational Male Ironman Triathletes

    Get PDF
    Purpose: The aim of this study was to investigate the relation between anthropometric variables and total race time including split times in 184 recreational male Ironman triathletes. Methods: Body mass, body height, body mass index, lengths and circumferences of limbs, thicknesses of skin-folds, sum of skin-fold thicknesses, and percent body fat were related to total race time including split times using correlation analysis and effect size. Results: A large effect size (r>0.37) was found for the association between body mass index and time in the run split and between both the sum of skin-folds and percent body fat with total race time. A medium effect size (r=0.24-0.36) was observed in the association between body mass and both the split time in running and total race time, between body mass index and total race time, between both the circumferences of upper arm and thigh with split time in the run and between both the sum of skin-folds and percent body fat with split times in swimming, cycling and running. Conclusions: The results of this study showed that lower body mass, lower body mass index and lower body fat were associated with both a faster Ironman race and a faster run split; lower circumferences of upper arm and thigh were also related with a faster run split

    Evaluation of the bacterial diversity of Pressure ulcers using bTEFAP pyrosequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Decubitus ulcers, also known as bedsores or pressure ulcers, affect millions of hospitalized patients each year. The microflora of chronic wounds such as ulcers most commonly exist in the biofilm phenotype and have been known to significantly impair normal healing trajectories.</p> <p>Methods</p> <p>Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP), a universal bacterial identification method, was used to identify bacterial populations in 49 decubitus ulcers. Diversity estimators were utilized and wound community compositions analyzed in relation to metadata such as Age, race, gender, and comorbidities.</p> <p>Results</p> <p>Decubitus ulcers are shown to be polymicrobial in nature with no single bacterium exclusively colonizing the wounds. The microbial community among such ulcers is highly variable. While there are between 3 and 10 primary populations in each wound there can be hundreds of different species present many of which are in trace amounts. There is no clearly significant differences in the microbial ecology of decubitus ulcer in relation to metadata except when considering diabetes. The microbial populations and composition in the decubitus ulcers of diabetics may be significantly different from the communities in non-diabetics.</p> <p>Conclusions</p> <p>Based upon the continued elucidation of chronic wound bioburdens as polymicrobial infections, it is recommended that, in addition to traditional biofilm-based wound care strategies, an antimicrobial/antibiofilm treatment program can be tailored to each patient's respective wound microflora.</p

    Student public commitment in a school-based diabetes prevention project: impact on physical health and health behavior

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As concern about youth obesity continues to mount, there is increasing consideration of widespread policy changes to support improved nutritional and enhanced physical activity offerings in schools. A critical element in the success of such programs may be to involve students as spokespeople for the program. Making such a public commitment to healthy lifestyle program targets (improved nutrition and enhanced physical activity) may potentiate healthy behavior changes among such students and provide a model for their peers. This paper examines whether student's "public commitment"--voluntary participation as a peer communicator or in student-generated media opportunities--in a school-based intervention to prevent diabetes and reduce obesity predicted improved study outcomes including reduced obesity and improved health behaviors.</p> <p>Methods</p> <p>Secondary analysis of data from a 3-year randomized controlled trial conducted in 42 middle schools examining the impact of a multi-component school-based program on body mass index (BMI) and student health behaviors. A total of 4603 students were assessed at the beginning of sixth grade and the end of eighth grade. Process evaluation data were collected throughout the course of the intervention. All analyses were adjusted for students' baseline values. For this paper, the students in the schools randomized to receive the intervention were further divided into two groups: those who participated in public commitment activities and those who did not. Students from comparable schools randomized to the assessment condition constituted the control group.</p> <p>Results</p> <p>We found a lower percentage of obesity (greater than or equal to the 95<sup>th </sup>percentile for BMI) at the end of the study among the group participating in public commitment activities compared to the control group (21.5% vs. 26.6%, p = 0.02). The difference in obesity rates at the end of the study was even greater among the subgroup of students who were overweight or obese at baseline; 44.6% for the "public commitment" group, versus 53.2% for the control group (p = 0.01). There was no difference in obesity rates between the group not participating in public commitment activities and the control group (26.4% vs. 26.6%).</p> <p>Conclusions</p> <p>Participating in public commitment activities during the HEALTHY study may have potentiated the changes promoted by the behavioral, nutrition, and physical activity intervention components.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov number, <a href="http://www.clinicaltrials.gov/ct2/show/NCT00458029">NCT00458029</a></p

    A DNA methylation biomarker of alcohol consumption.

    Get PDF
    The lack of reliable measures of alcohol intake is a major obstacle to the diagnosis and treatment of alcohol-related diseases. Epigenetic modifications such as DNA methylation may provide novel biomarkers of alcohol use. To examine this possibility, we performed an epigenome-wide association study of methylation of cytosine-phosphate-guanine dinucleotide (CpG) sites in relation to alcohol intake in 13 population-based cohorts (ntotal=13 317; 54% women; mean age across cohorts 42-76 years) using whole blood (9643 European and 2423 African ancestries) or monocyte-derived DNA (588 European, 263 African and 400 Hispanic ancestry) samples. We performed meta-analysis and variable selection in whole-blood samples of people of European ancestry (n=6926) and identified 144 CpGs that provided substantial discrimination (area under the curve=0.90-0.99) for current heavy alcohol intake (⩾42 g per day in men and ⩾28 g per day in women) in four replication cohorts. The ancestry-stratified meta-analysis in whole blood identified 328 (9643 European ancestry samples) and 165 (2423 African ancestry samples) alcohol-related CpGs at Bonferroni-adjusted P<1 × 10-7. Analysis of the monocyte-derived DNA (n=1251) identified 62 alcohol-related CpGs at P<1 × 10-7. In whole-blood samples of people of European ancestry, we detected differential methylation in two neurotransmitter receptor genes, the γ-Aminobutyric acid-A receptor delta and γ-aminobutyric acid B receptor subunit 1; their differential methylation was associated with expression levels of a number of genes involved in immune function. In conclusion, we have identified a robust alcohol-related DNA methylation signature and shown the potential utility of DNA methylation as a clinically useful diagnostic test to detect current heavy alcohol consumption.Medical Research Council (Grant IDs: MC_UU_12015/1, MC_UU_12015/2), Wellcome Trust. Detailed acknowledgements are included in the Supplementary Information that accompanies the paper on the Molecular Psychiatry website
    corecore