50 research outputs found

    Multi-Omics Analysis of Alcohol Use Disorder in Postmortem Human Brain Tissue

    Get PDF
    Alcohol use disorder is characterized by a loss of control over alcohol intake and contributes to a large number of premature deaths worldwide by representing a strong risk factor for numerous diseases. Despite decade-long research on alcohol use disorder, treatment options are limited and relapse rates following withdrawal treatment are high. Currently, alcohol use disorder is understood as a brain disorder as neuroimaging studies have shown substantial alcohol use disorder-associated connectivity and activity alterations in the human brain. This led to the hypothesis of a neurocircuitry of addiction involving multiple brain regions such as the ventral and dorsal striatum, but also cortical regions that display aberrant functional connectivity patterns in alcohol use disorder. These profound brain changes in alcohol use disorder are assumed to be established by molecular processes such as aberrant DNA methylation and gene expression patterns. To investigate these processes in the human brain, postmortem brain tissue depicts a valuable resource. Previous studies have been published reporting on alcohol use disorder-associated differential methylation or differentially expressed genes mainly in the prefrontal cortex. So far, no analysis has integrated DNA methylation and gene expression data in a multi-Omics approach. Further, it remains unclear how alterations in DNA methylation and gene expression are related to each other in the alcohol use disorder brain. The overall aim of the presented studies was to identify functionally relevant molecular mechanisms of alcohol use disorder in the neurocircuitry of addiction. To address these points, the first paper aimed to expand the epigenetic characterization of alcohol use disorder to the neurocircuitry of addiction by performing an epigenome-wide association study of DNA methylation in alcohol use disorder in five brain regions: the cortical regions anterior cingulate cortex and Brodmann Area 9, and the striatal regions caudate nucleus, putamen, and ventral striatum. In the second study, the gene expression profile of the striatal brain regions was investigated using RNA-Sequencing enabling the integration of DNA methylation and gene expression data in a multi-omics approach. The biological implication of alcohol use disorder-associated DNA methylation and expression signatures was investigated in both studies using a comprehensive set of bioinformatic tools including Gene Ontology- and gene-set enrichment analyses, weighted correlation network analyses, enrichment analyses of results from genome-wide association studies of substance use disorder phenotypes, and protein-protein interaction networks. In the epigenome-wide association study of alcohol use disorder in five brain regions, 20 differentially methylated CpG sites were detected, two in caudate nucleus and 18 in the ventral striatum, that were associated with alcohol use disorder at epigenome-wide significance. Alcohol use disorder-associated DNA methylation signatures were strongest in the caudate nucleus, putamen, and ventral striatum and were enriched within immune-related cellular pathways. Gene expression analysis in the second study suggested converging evidence for inflammatory and immunological signaling in alcohol use disorder. While the overlap of differential methylation and differential expression at the gene level was limited, it was evident on the network level. Consistent differential expression of the ARHGEF15 gene was found in the caudate nucleus, putamen, and ventral striatum in alcohol use disorder. Further, the STAT3 gene was identified as a conserved hub node in alcohol use disorder-associated gene networks and might be a promising candidate for further evaluation. In conclusion, this is the first study that integrated DNA methylation and gene expression data from the same individuals in multiple brain regions in the context of alcohol use disorder. Converging evidence from this study supports the role of (neuro) inflammation in the pathophysiology of alcohol use disorder. Methods for multi-omics integration are rapidly emerging and the integration of multiple omics including epigenome-wide DNA Methylation, transcriptomics, proteomics, and non-coding RNAs enables the complementation, but also the prioritization of findings from single omics layers. In follow-up studies, functional validation of multi-omics-derived candidate genes and pathways should be performed using animal models and patient-derived brain organoids. Conducting such precision medicine approaches might lead to the discovery of novel therapeutic strategies in alcohol use disorder, which are urgently required

    Internalisiertes Stigma ist nach kognitiver Verhaltenstherapie reduziert

    Get PDF

    Meta-analysis of epigenome-wide associations between DNA methylation at birth and childhood cognitive skills

    Get PDF
    Cognitive skills are a strong predictor of a wide range of later life outcomes. Genetic and epigenetic associations across the genome explain some of the variation in general cognitive abilities in the general population and it is plausible that epigenetic associations might arise from prenatal environmental exposures and/or genetic variation early in life. We investigated the association between cord blood DNA methylation at birth and cognitive skills assessed in children from eight pregnancy cohorts within the Pregnancy And Childhood Epigenetics (PACE) Consortium across overall (total N = 2196), verbal (total N = 2206) and non-verbal cognitive scores (total N = 3300). The associations at single CpG sites were weak for all of the cognitive domains investigated. One region near DUSP22 on chromosome 6 was associated with non-verbal cognition in a model adjusted for maternal IQ. We conclude that there is little evidence to support the idea that variation in cord blood DNA methylation at single CpG sites is associated with cognitive skills and further studies are needed to confirm the association at DUSP22.Peer reviewe

    A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation

    Get PDF
    Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P &lt; 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.</p

    A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation

    Get PDF
    Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P &lt; 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.</p

    The interplay of family history of depression and early trauma: associations with lifetime and current depression in the German national cohort (NAKO)

    Get PDF
    INTRODUCTION: Family history of depression and childhood maltreatment are established risk factors for depression. However, how these factors are interrelated and jointly influence depression risk is not well understood. The present study investigated (i) if childhood maltreatment is associated with a family history of depression (ii) if family history and childhood maltreatment are associated with increased lifetime and current depression, and whether both factors interact beyond their main effects, and (iii) if family history affects lifetime and current depression via childhood maltreatment. METHODS: Analyses were based on a subgroup of the first 100,000 participants of the German National Cohort (NAKO), with complete information (58,703 participants, mean age = 51.2 years, 53% female). Parental family history of depression was assessed via self-report, childhood maltreatment with the Childhood Trauma Screener (CTS), lifetime depression with self-reported physician's diagnosis and the Mini-International Neuropsychiatric Interview (MINI), and current depressive symptoms with the depression scale of the Patient Health Questionnaire (PHQ-9). Generalized linear models were used to test main and interaction effects. Mediation was tested using causal mediation analyses. RESULTS: Higher frequencies of the childhood maltreatment measures were found in subjects reporting a positive family history of depression. Family history and childhood maltreatment were independently associated with increased depression. No statistical interactions of family history and childhood maltreatment were found for the lifetime depression measures. For current depressive symptoms (PHQ-9 sum score), an interaction was found, with stronger associations of childhood maltreatment and depression in subjects with a positive family history. Childhood maltreatment was estimated to mediate 7%–12% of the effect of family history on depression, with higher mediated proportions in subjects whose parents had a depression onset below 40 years. Abuse showed stronger associations with family history and depression, and higher mediated proportions of family history effects on depression than neglect. DISCUSSION: The present study confirms the association of childhood maltreatment and family history with depression in a large population-based cohort. While analyses provide little evidence for the joint effects of both risk factors on depression beyond their individual effects, results are consistent with family history affecting depression via childhood maltreatment to a small extent

    GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors

    Get PDF
    Objective: Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and crossvalidated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS metaanalysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures. Methods: This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses. Results: Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values &lt;5×10-8. These loci were mostly intergenic and implicated DRD2, SLC6A9, FURIN, NLGN1, SOX5, PDE4B, and CACNG2. The multi-ancestry SNP-based heritability estimate of SA was 5.7% on the liability scale (SE=0.003, p=5.7×10-80). Significant brain tissue gene expression and drug set enrichment were observed. There was shared genetic variation of SA with attention deficit hyperactivity disorder, smoking, and risk tolerance after conditioning SA on both major depressive disorder and posttraumatic stress disorder. Genetic causal proportion analyses implicated shared genetic risk for specific health factors. Conclusions: This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death.</p

    A Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis highlights potential relationships between birth order and neonatal blood DNA methylation.

    Get PDF
    Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
    corecore