630 research outputs found
Does Emotional Intelligence Buffer the Effects of Acute Stress? A Systematic Review
People with higher levels of emotional intelligence (EI: adaptive emotional traits, skills and abilities) typically achieve more positive life outcomes, such as psychological wellbeing, educational attainment, and job-related success. Although the underpinning mechanisms linking EI with those outcomes are largely unknown, it has been suggested that EI may work as a ‘stress buffer’. Theoretically, when faced with a stressful situation, emotionally intelligent individuals should show a more adaptive response than those with low EI, such as reduced reactivity (less mood deterioration, less physiological arousal), and faster recovery once the threat has passed. A growing number of studies have begun to investigate that hypothesis in respect to EI measured as both an ability (AEI) and trait (TEI), but results are unclear. To test the ‘stress-buffering’ function of EI, we systematically reviewed experimental studies that explored the relationship between both types of EI and acute stress reactivity or recovery. By searching 4 databases, we identified 45 eligible studies. Results indicated that EI was only adaptive in certain contexts, and that findings differed according to stressor type, and how EI was measured. In terms of stress reactivity, TEI related to less mood deterioration during sports-based stressors (e.g. competitions), physical discomfort (e.g. dental procedure), and cognitive stressors (e.g. memory tasks), but did not appear as helpful in other contexts (e.g. speeches). Furthermore, effects of TEI on physiological stress responses, such as heart rate, were inconsistent. Effects of AEI on subjective and objective stress reactivity were often non-significant, with high levels detrimental in some cases. However, data suggest that both higher AEI and TEI relate to faster recovery from acute stress. In conclusion, results provide mixed support for the stress-buffering effect of EI. Limitations and quality of studies are also discussed. Findings could have implications for EI training programmes
Contextualizing genetic risk score for disease screening and rare variant discovery.
Studies of the genetic basis of complex traits have demonstrated a substantial role for common, small-effect variant polygenic burden (PB) as well as large-effect variants (LEV, primarily rare). We identify sufficient conditions in which GWAS-derived PB may be used for well-powered rare pathogenic variant discovery or as a sample prioritization tool for whole-genome or exome sequencing. Through extensive simulations of genetic architectures and generative models of disease liability with parameters informed by empirical data, we quantify the power to detect, among cases, a lower PB in LEV carriers than in non-carriers. Furthermore, we uncover clinically useful conditions wherein the risk derived from the PB is comparable to the LEV-derived risk. The resulting summary-statistics-based methodology (with publicly available software, PB-LEV-SCAN) makes predictions on PB-based LEV screening for 36 complex traits, which we confirm in several disease datasets with available LEV information in the UK Biobank, with important implications on clinical decision-making
Testing for association of the monoamine oxidase A promoter polymorphism with brain structure volumes in both autism and the fragile X syndrome
Abstract Background Autism and the fragile X syndrome (FXS) are related to each other genetically and symptomatically. A cardinal biological feature of both disorders is abnormalities of cerebral cortical brain volumes. We have previously shown that the monoamine oxidase A (MAOA) promoter polymorphism is associated with cerebral cortical volumes in children with autism, and we now sought to determine whether the association was also present in children with FXS. Methods Participants included 47 2-year-old Caucasian boys with FXS, some of whom also had autism, as well as 34 2-year-old boys with idiopathic autism analyzed in a previous study. The MAOA promoter polymorphism was genotyped and tested for relationships with gray and white matter volumes of the cerebral cortical lobes and cerebro-spinal fluid volume of the lateral ventricles. Results MAOA genotype effects in FXS children were the same as those previously observed in idiopathic autism: the low activity MAOA promoter polymorphism allele was associated with increased gray and white matter volumes in all cerebral lobes. The effect was most pronounced in frontal lobe gray matter and all three white matter regions: frontal gray, F = 4.39, P = 0.04; frontal white, F = 5.71, P = 0.02; temporal white, F = 4.73, P = 0.04; parieto-occipital white, F = 5.00, P = 0.03. Analysis of combined FXS and idiopathic autism samples produced P values for these regions <0.01 and effect sizes of approximately 0.10. Conclusions The MAOA promoter polymorphism is similarly associated with brain structure volumes in both idiopathic autism and FXS. These data illuminate a number of important aspects of autism and FXS heritability: a genetic effect on a core biological trait of illness, the specificity/generalizability of the genetic effect, and the utility of examining individual genetic effects on the background of a single gene disorder such as FXS
Genome-wide association study of problematic opioid prescription use in 132,113 23andMe research participants of European ancestry
The growing prevalence of opioid use disorder (OUD) constitutes an urgent health crisis. Ample evidence indicates that risk for OUD is heritable. As a surrogate (or proxy) for OUD, we explored the genetic basis of using prescription opioids \u27not as prescribed\u27. We hypothesized that misuse of opiates might be a heritable risk factor for OUD. To test this hypothesis, we performed a genome-wide association study (GWAS) of problematic opioid use (POU) in 23andMe research participants of European ancestry (N = 132,113; 21% cases). We identified two genome-wide significant loci (rs3791033, an intronic variant of KDM4A; rs640561, an intergenic variant near LRRIQ3). POU showed positive genetic correlations with the two largest available GWAS of OUD and opioid dependence (
Trait emotional intelligence and attentional bias for positive emotion: An eye tracking study
Emotional intelligence (EI) may promote wellbeing through facilitation of adaptive attentional processing patterns. In the current study, a total of 54 adults (43 females, mean age = 25 years, SD = 10 years) completed a Trait Emotional Intelligence (TEI) scale and took part in three eye-tracking tasks, where they viewed (1) faces with different emotions (happy, angry, fearful, neutral), (2) 16-face crowds with varying ratios of happy to angry faces, and (3) 4 visual scenes (physical threat, social threat, positive social, neutral). Findings showed that higher TEI was associated with more attention to positive emotional stimuli (happy faces, positive social scenes), relative to negative and neutral stimuli. An attentional preference for positive rather than negative emotional stimuli may be one way that TEI affords protection from stressors to promote mental health
Cortical enlargement in autism is associated with a functional VNTR in the monoamine oxidase A gene
Monoamine oxidase A (MAOA) is an enzyme expressed in the brain that metabolizes dopamine, norepinephrine, epinephrine, and serotonin. Abnormalities of serotonin neurotransmission have long been implicated in the psychopathology of autism. A polymorphism exists within the promoter region of the MAOA gene that influences MAOA expression levels so that “low activity” alleles are associated with increased neurotransmitter levels in the brain. Individuals with autism often exhibit elevated serotonin levels. Additional studies indicate that the “low activity” allele may be associated with lower IQ and more severe autistic symptoms. In this study we genotyped the MAOA promoter polymorphism in a group of 29 males (age 2–3 years) with autism and a group of 39 healthy pediatric controls for whom brain MRI data was available. We found a consistent association between the “low activity” allele and larger brain volumes for regions of the cortex in children with autism but not in controls. We did not find evidence for over-transmission of the “low activity” allele in a separate sample of 114 affected sib pairfamilies. Nor did we find any unknown SNPs in yet another sample of 96 probands. Future studies will determine if there is a more severe clinical phenotype associated with both the “low activity” genotype and the larger brain volumes in our sample
Concerns About the Use of Polygenic Embryo Screening for Psychiatric and Cognitive Traits
Private companies have begun offering services to allow parents undergoing in-vitro fertilisation to screen embryos for genetic risk of complex diseases, including psychiatric disorders. This procedure, called polygenic embryo screening, raises several difficult scientific and ethical issues, as discussed in this Personal View. Polygenic embryo screening depends on the statistical properties of polygenic risk scores, which are complex and not well studied in the context of this proposed clinical application. The clinical, social, and ethical implications of polygenic embryo screening have barely been discussed among relevant stakeholders. To our knowledge, the International Society of Psychiatric Genetics is the first professional biomedical organisation to issue a statement regarding polygenic embryo screening. For the reasons discussed in this Personal View, the Society urges caution and calls for additional research and oversight on the use of polygenic embryo screening
Genome-Wide Association Studies of Coffee Intake in UK/US Participants of European Ancestry Uncover Gene-Cohort Influences
Coffee is one of the most widely consumed beverages. We performed a genome-wide association study (GWAS) of coffee intake in US-based 23andMe participants (N =130,153) and identified 7 significant loci, with many replicating in three multi-ancestral cohorts. We examined genetic correlations and performed a phenome-wide association study across thousands of biomarkers and health and lifestyle traits, then compared our results to the largest available GWAS of coffee intake from UK Biobank (UKB; N =334,659). The results of these two GWAS were highly discrepant. We observed positive genetic correlations between coffee intake and psychiatric illnesses, pain, and gastrointestinal traits in 23andMe that were absent or negative in UKB. Genetic correlations with cognition were negative in 23andMe but positive in UKB. The only consistent observations were positive genetic correlations with substance use and obesity. Our study shows that GWAS in different cohorts could capture cultural differences in the relationship between behavior and genetics
Genome-wide association study of musical beat synchronization demonstrates high polygenicity
Moving in synchrony to the beat is a fundamental component of musicality. Here we conducted a genome-wide association study to identify common genetic variants associated with beat synchronization in 606,825 individuals. Beat synchronization exhibited a highly polygenic architecture, with 69 loci reaching genome-wide significance (P < 5 × 10−8) and single-nucleotide-polymorphism-based heritability (on the liability scale) of 13%–16%. Heritability was enriched for genes expressed in brain tissues and for fetal and adult brain-specific gene regulatory elements, underscoring the role of central-nervous-system-expressed genes linked to the genetic basis of the trait. We performed validations of the self-report phenotype (through separate experiments) and of the genome-wide association study (polygenic scores for beat synchronization were associated with patients algorithmically classified as musicians in medical records of a separate biobank). Genetic correlations with breathing function, motor function, processing speed and chronotype suggest shared genetic architecture with beat synchronization and provide avenues for new phenotypic and genetic explorations
Antiviral susceptibility of clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses isolated from birds and mammals in the United States, 2022
Clade 2.3.4.4b highly pathogenic avian influenza (HPAI) A(H5N1) viruses that are responsible for devastating outbreaks in birds and mammals pose a potential threat to public health. Here, we evaluated their susceptibility to influenza antivirals. Of 1,015 sequences of HPAI A(H5N1) viruses collected in the United States during 2022, eight viruses (∼0.8%) had a molecular marker of drug resistance to an FDA-approved antiviral: three adamantane-resistant (M2-V27A), four oseltamivir-resistant (NA-H275Y), and one baloxavir-resistant (PA-I38T). Additionally, 31 viruses contained mutations that may reduce susceptibility to inhibitors of neuraminidase (NA) (n = 20) or cap-dependent endonuclease (CEN) (n = 11). A panel of 22 representative viruses was tested phenotypically. Overall, clade 2.3.4.4b A(H5N1) viruses lacking recognized resistance mutations were susceptible to FDA-approved antivirals. Oseltamivir was least potent at inhibiting NA activity, while the investigational NA inhibitor AV5080 was most potent, including against NA mutants. A novel NA substitution T438N conferred 12-fold reduced inhibition by zanamivir, and in combination with the known marker N295S, synergistically affected susceptibility to all five NA inhibitors. In cell culture-based assays HINT and IRINA, the PA-I38T virus displayed 75- to 108-fold and 37- to 78-fold reduced susceptibility to CEN inhibitors, baloxavir and the investigational AV5116, respectively. Viruses with PA-I38M or PA-A37T showed 5- to 10-fold reduced susceptibilities. As HPAI A(H5N1) viruses continue to circulate and evolve, close monitoring of drug susceptibility is needed for risk assessment and to inform decisions regarding antiviral stockpiling
- …