9 research outputs found

    Local Compression in Automated Breast Ultrasound in the Mammographic Geometry

    Full text link
    Background, Motivation and Objective: Automated ultrasound scanning (AUS) of the breast has developed more slowly than anticipated. The main limitation, beyond achieving adequate acoustic coupling to the breast, has been excessive shadow artifacts, as reflecting structures at acute angles to the ultrasound beam are not flattened by the transducer as well as in manual scanning. We believe that imaging of the breast in near mammographic compression provides much of the needed flattening. The question under initial study in this effort is, whether in breast AUS under very light mammographic compression, local compression by the transducer might flatten the acutely oriented structures further and reduce the acoustic path length to key structures in the breast. We suspect these improvements will be possible without distorting the breast so dramatically that the lesion registration advantages of scanning the breast in the same system as mammography or digital breast tomosynthesis (DBT) are not realized. Preliminary tests are reported here, as well as design of a system for a more refined human study. Statement of Contribution/Methods: Initial imaging tests were performed in our combined AUS/DBT system. A fiber mesh, loosened slightly in its frame, replaced the standard plastic mammography compression paddle. The transducer, in contact with the mesh and the breast, was translated by motors. The compression force of the linear array transducer on its vertical was manually controlled. Breast phantoms and the breasts of three women were scanned with usual compression by the mesh paddle and then with less global, but added local, compression. Results: Examples of flattened structures were observed more brightly in the locally compressed breasts, and acoustic paths longer than 35 mm were reduced, by _10 mm. In many areas image penetration was 3 cm greater. In one case, image volumes w/wo local compression were spatially aligned by nonlinear image registration software. - - Discussion and Conclusions: Visual indicators of image features expected to provide improved ultrasonic imaging were observed with local compression and lateral movement of tissues appeared acceptable. These results motivated design and construction of an apparatus to make local compression practical and safe. It utilizes joystick control of the vertical compression force during scanning, realized by pneumatic actuators attached to the transducer. The air pressure applied to these actuators is also applied to actuators in the joystick for force feedback to the operator. Two miniature vibrators attached to the joystick provide vibrotactile feedback of the reaction torques computed from the measurements of 6 force sensors on the transducer holder. The fail-safe system design insures no pneumatic compression force application to the breast in case of power loss or emergency shutdown.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87269/4/Saitou50.pd

    Spatial registration of temporally separated whole breast 3D ultrasound images

    No full text
    The purpose of this study was to evaluate the potential for use of image volume based registration (IVBaR) to aid in measurement of changes in the tumor during chemotherapy of breast cancer. Successful IVBaR could aid in the detection of such changes in response to neoadjuvant chemotherapy and potentially be useful for routine breast cancer screening and diagnosis. IVBaR was employed in a new method of automated estimation of tumor volume in studies following the radiologist identification of the tumor region in the prechemotherapy scan. The authors have also introduced a new semiautomated method for validation of registration based on Doppler ultrasound (U.S.) signals that are independent of the grayscale signals used for registration. This Institutional Review Board approved study was conducted on 10 patients undergoing chemotherapy and 14 patients with a suspicious∕unknown mass scheduled to undergo biopsy. Reasonably reproducible mammographic positioning and nearly whole breast U.S. imaging were achieved. The image volume was registered offline with a mutual information cost function and global interpolation based on a thin-plate spline using MIAMI FUSE© software developed at the University of Michigan. The success and accuracy of registration of the three dimensional (3D) U.S. image volume were measured by means of mean registration error (MRE). IVBaR was successful with MRE of 4.3±1.7 mm in 9 out of 10 reproducibility automated breast ultrasound (ABU) studies and in 12 out of 17 ABU image pairs collected before, during, or after 115±14 days of chemotherapy. Semiautomated tumor volume estimation was performed on registered image volumes giving 86±8% mean accuracy compared to the radiologist hand-segmented tumor volume on seven cases. Doppler studies yielded fractional volume of color pixels in the region surrounding the lesion and its change with changing breast compression. The Doppler study of patients with detectable blood flow included five patients with suspicious masses and three undergoing chemotherapy. Spatial alignment of the 3D blood vessel data from the Doppler studies provided independent measures for the validation of registration. In 15 Doppler image volume pairs scanned with differing breast compression, the mean centerline separation value was 1.5±0.6 mm, while MRE based on a few identifiable structural points common to the two grayscale image volumes was 1.1±0.6 mm. Another measure, the overlap ratio of blood vessels, was shown to increase from 0.32 to 0.59 (+84%) with IVBaR for pairs at various compression levels. These results show that successful registration of ABU scans may be accomplished for comparison and integration of information
    corecore