461 research outputs found

    The Acadian Migrations

    Get PDF
    L'Acadie, depuis le début du XVIIe siècle jusqu'en 1713, faisait partie de l'empire colonial français en Amérique du Nord. Le traité d'Utrecht céda la plus grande partie de l'Acadie et sa population à la Grande-Bretagne. L'instabilité politique qu'engendra la position des Acadiens par rapport aux nouvelles limites coloniales aboutit finalement à leur expulsion et à leur déportation en 1755. Durant les cinquante années qui suivirent, se développa un vaste et difficile mouvement de retour. Mais ce n'est que vers la fin de cette période que les Acadiens se fixèrent définitivement en des endroits offrant un minimum de stabilité. Ces mouvements migratoires durant cette période font l'objet du présent article, de même que la répartition des communautés acadiennes vers 1800.Acadia from its initial settlement in 1604 until 1713 was a part of the French colonial empire in North America. By the Treaty of Utrecht most of Acadia and its French population was ceded to the British. The political instability generated by the anomalous position of the Acadians eventually led to their expulsion in 1755. During the following 50 years their efforts at repatriation were thwarted and only toward the end of the period were they finally settled in places offering a measure of security. The trends of their migrations over the period are illustrated, as well as their final settlement pattern in 1800

    Les migrations acadiennes

    Get PDF
    L'Acadie fit partie de l'empire colonial français en terre d'Amérique de 1604 à 1713. La majeure partie du territoire et de la population fut cédée aux Britanniques par le traité d'Utrecht. La position équivoque des Acadiens conduisant à l'instabilité politique entraîna leur expulsion en 1755. Leurs tentatives de rapatriement dans les cinquante ans qui suivirent, furent toutes contrecarrées. C'est seulement à la fin du 18e siècle qu'ils purent s'installer dans des lieux sûrs. Nous avons essayé de représenter ici les flux migratoires des Acadiens suite à leur déportation, ainsi que leur implantation « définitive » vers les années 1800.Acadia, from its initial settlement in 1604 until 1713, was a part of the French colonial empire in North America. By the Treaty of Utrecht most of Acadia with its French population was ceded to the British. The political instability generated by the anomalous position of the Acadians eventually led to their expulsion in 1755. During the 50 years which followed their efforts at repatriation were thwarted and only toward the end of the period did they finally settle in places offering a measure of security. The trends of their migrations over the period are illustrated, as well as their final settlement pattern in 1800

    A practice-related risk score (PRS): a DOPPS-derived aggregate quality index for haemodialysis facilities

    Get PDF
    Background. The Dialysis Outcomes and Practice Patterns Study (DOPPS) database was used to develop and validate a practice-related risk score (PRS) based on modifiable practices to help facilities assess potential areas for improving patient care. Methods. Relative risks (RRs) from a multivariable Cox mortality model, based on observational haemodialysis (HD) patient data from DOPPS I (1996-2001, seven countries), were used. The four practices were the percent of patients with Kt/V >= 1.2, haemoglobin >= 11 g/dl (110 g/l), albumin >= 4.0 g/dl (40g/l) and catheter use, and were significantly related to mortality when modelled together. DOPPS II data (2002-2004, 12 countries) were used to evaluate the relationship between PRS and mortality risk using Cox regression. Results. For facilities in DOPPS I and II, changes in PRS over time were significantly correlated with changes in the standardized mortality ratio (SMR). The PRS ranged from 1.0 to 2.1. Overall, the adjusted RR of death was 1.05 per 0.1 points higher PRS (P < 0.0001). For facilities in both DOPPS I and II (N = 119), a 0.2 decrease in PRS was associated with a 0.19 decrease in SMR (P = 0.005). On average, facilities that improved PRS practices showed significantly reduced mortality over the same time frame. Conclusions. The PRS assesses modifiable HD practices that are linked to improved patient survival. Further refinements might lead to improvements in the PRS and will address regional variations in the PRS/mortality relationship

    Evaluation of a subject-specific transfer-function-based nonlinear QT interval rate-correction method

    Get PDF
    The QT interval in the electrocardiogram (ECG) is a measure of total duration of depolarization and repolarization. Correction for heart rate is necessary to provide a single intrinsic physiological value that can be compared between subjects and within the same subject under different conditions. Standard formulas for the corrected QT (QTc) do not fully reproduce the complexity of the dependence in the preceding interbeat intervals (RR) and inter-subject variability. In this paper, a subject-specific, nonlinear, transfer function-based correction method is formulated to compute the QTc from Holter ECG recordings. The model includes five parameters: three describing the static QT–RR relationship and two representing memory/hysteresis effects that intervene in the calculation of effective RR values. The parameter identification procedure is designed to minimize QTc fluctuations and enforce zero correlation between QTc and effective RR. Weighted regression is used to better handle unbalanced or skewed RR distributions. The proposed optimization approach provides a general mathematical framework for further extensions of the model. Validation, robustness evaluation and comparison with existing QT correction formulas is performed on ECG signals recorded during sinus rhythm, atrial pacing, tilt-table tests, stress tests and atrial flutter (29 subjects in total). The resulting average modeling error on the QTc is 4.9 ± 1.1 ms with a sampling interval of 2 ms, which outperforms correction formulas currently used. The results demonstrate the benefits of subject-specific rate correction and hysteresis reduction

    Photochemistry of Furyl- and Thienyldiazomethanes: Spectroscopic Characterization of Triplet 3-Thienylcarbene

    Get PDF
    Photolysis (λ \u3e 543 nm) of 3-thienyldiazomethane (1), matrix isolated in Ar or N2 at 10 K, yields triplet 3-thienylcarbene (13) and α-thial-methylenecyclopropene (9). Carbene 13 was characterized by IR, UV/vis, and EPR spectroscopy. The conformational isomers of 3-thienylcarbene (s-E and s-Z) exhibit an unusually large difference in zero-field splitting parameters in the triplet EPR spectrum (|D/hc| = 0.508 cm–1, |E/hc| = 0.0554 cm–1; |D/hc| = 0.579 cm–1, |E/hc| = 0.0315 cm–1). Natural Bond Orbital (NBO) calculations reveal substantially differing spin densities in the 3-thienyl ring at the positions adjacent to the carbene center, which is one factor contributing to the large difference in D values. NBO calculations also reveal a stabilizing interaction between the sp orbital of the carbene carbon in the s-Z rotamer of 13 and the antibonding σ orbital between sulfur and the neighboring carbon—an interaction that is not observed in the s-E rotamer of 13. In contrast to the EPR spectra, the electronic absorption spectra of the rotamers of triplet 3-thienylcarbene (13) are indistinguishable under our experimental conditions. The carbene exhibits a weak electronic absorption in the visible spectrum (λmax = 467 nm) that is characteristic of triplet arylcarbenes. Although studies of 2-thienyldiazomethane (2), 3-furyldiazomethane (3), or 2-furyldiazomethane (4) provided further insight into the photochemical interconversions among C5H4S or C5H4O isomers, these studies did not lead to the spectroscopic detection of the corresponding triplet carbenes (2-thienylcarbene (11), 3-furylcarbene (23), or 2-furylcarbene (22), respectively)

    Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1

    Get PDF
    Subarachnoid hemorrhage (SAH) carries a 50% mortality rate. The extravasated erythrocytes that surround the brain contain heme, which, when released from damaged red blood cells, functions as a potent danger molecule that induces sterile tissue injury and organ dysfunction. Free heme is metabolized by heme oxygenase (HO), resulting in the generation of carbon monoxide (CO), a bioactive gas with potent immunomodulatory capabilities. Here, using a murine model of SAH, we demonstrated that expression of the inducible HO isoform (HO-1, encoded by Hmox1) in microglia is necessary to attenuate neuronal cell death, vasospasm, impaired cognitive function, and clearance of cerebral blood burden. Initiation of CO inhalation after SAH rescued the absence of microglial HO-1 and reduced injury by enhancing erythrophagocytosis. Evaluation of correlative human data revealed that patients with SAH have markedly higher HO-1 activity in cerebrospinal fluid (CSF) compared with that in patients with unruptured cerebral aneurysms. Furthermore, cisternal hematoma volume correlated with HO-1 activity and cytokine expression in the CSF of these patients. Collectively, we found that microglial HO-1 and the generation of CO are essential for effective elimination of blood and heme after SAH that otherwise leads to neuronal injury and cognitive dysfunction. Administration of CO may have potential as a therapeutic modality in patients with ruptured cerebral aneurysms

    AGO104 is a RdDM effector of paramutation at the maize b1 locus

    Get PDF
    Although paramutation has been well-studied at a few hallmark loci involved in anthocyanin biosynthesis in maize, the cellular and molecular mechanisms underlying the phenomenon remain largely unknown. Previously described actors of paramutation encode components of the RNA-directed DNA-methylation (RdDM) pathway that participate in the biogenesis of 24-nucleotide small interfering RNAs (24-nt siRNAs) and long non-coding RNAs. In this study, we uncover an ARGONAUTE (AGO) protein as an effector of the RdDM pathway that is in charge of guiding 24-nt siRNAs to their DNA target to create de novo DNA methylation. We combined immunoprecipitation, small RNA sequencing and reverse genetics to, first, validate AGO104 as a member of the RdDM effector complex and, then, investigate its role in paramutation. We found that AGO104 binds 24-nt siRNAs involved in RdDM, including those required for paramutation at the b1 locus. We also show that the ago104-5 mutation causes a partial reversion of the paramutation phenotype at the b1 locus, revealed by intermediate pigmentation levels in stem tissues. Therefore, our results place AGO104 as a new member of the RdDM effector complex that plays a role in paramutation at the b1 locus in maize.</jats:p

    A One Health overview, facilitating advances in comparative medicine and translational research.

    Get PDF
    Table of contentsA1 One health advances and successes in comparative medicine and translational researchCheryl StroudA2 Dendritic cell-targeted gorilla adenoviral vector for cancer vaccination for canine melanomaIgor Dmitriev, Elena Kashentseva, Jeffrey N. Bryan, David T. CurielA3 Viroimmunotherapy for malignant melanoma in the companion dog modelJeffrey N. Bryan, David Curiel, Igor Dmitriev, Elena Kashentseva, Hans Rindt, Carol Reinero, Carolyn J. HenryA4 Of mice and men (and dogs!): development of a commercially licensed xenogeneic DNA vaccine for companion animals with malignant melanomaPhilip J. BergmanA5 Successful immunotherapy with a recombinant HER2-expressing Listeria monocytogenes in dogs with spontaneous osteosarcoma paves the way for advances in pediatric osteosarcomaNicola J. Mason, Josephine S. Gnanandarajah, Julie B. Engiles, Falon Gray, Danielle Laughlin, Anita Gaurnier-Hausser, Anu Wallecha, Margie Huebner, Yvonne PatersonA6 Human clinical development of ADXS-HER2Daniel O'ConnorA7 Leveraging use of data for both human and veterinary benefitLaura S. TremlA8 Biologic replacement of the knee: innovations and early clinical resultsJames P. StannardA9 Mizzou BioJoint Center: a translational success storyJames L. CookA10 University and industry translational partnership: from the lab to commercializationMarc JacobsA11 Beyond docking: an evolutionarily guided OneHealth approach to drug discoveryGerald J. Wyckoff, Lee Likins, Ubadah Sabbagh, Andrew SkaffA12 Challenges and opportunities for data applications in animal health: from precision medicine to precision husbandryAmado S. GuloyA13 A cloud-based programmable platform for healthHarlen D. HaysA14 Comparative oncology: One Health in actionAmy K. LeBlancA15 Companion animal diseases bridge the translational gap for human neurodegenerative diseaseJoan R. Coates, Martin L. Katz, Leslie A. Lyons, Gayle C. Johnson, Gary S. Johnson, Dennis P. O'BrienA16 Duchenne muscular dystrophy gene therapyDongsheng DuanA17 Polycystic kidney disease: cellular mechanisms to emerging therapiesJames P. CalvetA18 The domestic cat as a large animal model for polycystic kidney diseaseLeslie A. Lyons, Barbara GandolfiA19 The support of basic and clinical research by the Polycystic Kidney Disease FoundationDavid A. BaronA20 Using naturally occurring large animal models of human disease to enable clinical translation: treatment of arthritis using autologous stromal vascular fraction in dogsMark L. WeissA21 Regulatory requirements regarding clinical use of human cells, tissues, and tissue-based productsDebra A. WebsterA22 Regenerative medicine approaches to Type 1 diabetes treatmentFrancis N. KaranuA23 The zoobiquity of canine diabetes mellitus, man's best friend is a friend indeed-islet transplantationEdward J. RobbA24 One Medicine: a development model for cellular therapy of diabetesRobert J. Harman
    • …
    corecore