45 research outputs found

    Molecular epidemiology of a hepatitis C virus epidemic in a haemodialysis unit: outbreak investigation and infection outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HCV is a leading cause of liver chronic diseases all over the world. In developed countries the highest prevalence of infection is reported among intravenous drug users and haemodialysis (HD) patients. The present report is to identify the pathway of HCV transmission during an outbreak of HCV infection in a privately run haemodialysis (HD) unit in Italy in 2005.</p> <p>Methods</p> <p>Dynamics of the outbreak and infection clinical outcomes were defined through an ambi-directional cohort study. Molecular epidemiology techniques were used to define the relationships between the viral variants infecting the patients and confirm the outbreak. Risk analysis and auditing procedures were carried out to define the transmission pathway(s).</p> <p>Results</p> <p>Of the 50 patients treated in the HD unit 5 were already anti-HCV positive and 13 became positive during the study period (AR = 28.9%). Phylogenic analysis identified that, all the molecularly characterized incident cases (10 out of 13), were infected with the same viral variant of one of the prevalent cases. The multivariate analysis and the auditing procedure disclosed a single event of multi-dose vials heparin contamination as the cause of transmission of the infection in 11 out of the 13 incident cases; 2 additional incident cases occurred possibly as a result of inappropriate risk management.</p> <p>Discussion</p> <p>More than 30% of all HCV infections in developed countries results from poor application of standard precautions during percutaneous procedures. Comprehensive strategy which included: educational programmes, periodical auditing on standard precaution, use of single-dose vials whenever possible, prospective surveillance for blood-borne infections (including a system of prompt notification) and risk assessment/management dedicated staff are the cornerstone to contain and prevent outbreaks in HD</p> <p>Conclusions</p> <p>The outbreak described should serve as a reminder to HD providers that patients undergoing dialysis are at risk for HCV infection and that HCV may be easily transmitted whenever standard precautions are not strictly applied.</p

    Secretion of Genome-Free Hepatitis B Virus – Single Strand Blocking Model for Virion Morphogenesis of Para-retrovirus

    Get PDF
    As a para-retrovirus, hepatitis B virus (HBV) is an enveloped virus with a double-stranded (DS) DNA genome that is replicated by reverse transcription of an RNA intermediate, the pregenomic RNA or pgRNA. HBV assembly begins with the formation of an “immature” nucleocapsid (NC) incorporating pgRNA, which is converted via reverse transcription within the maturing NC to the DS DNA genome. Only the mature, DS DNA-containing NCs are enveloped and secreted as virions whereas immature NCs containing RNA or single-stranded (SS) DNA are not enveloped. The current model for selective virion morphogenesis postulates that accumulation of DS DNA within the NC induces a “maturation signal” that, in turn, triggers its envelopment and secretion. However, we have found, by careful quantification of viral DNA and NCs in HBV virions secreted in vitro and in vivo, that the vast majority of HBV virions (over 90%) contained no DNA at all, indicating that NCs with no genome were enveloped and secreted as empty virions (i.e., enveloped NCs with no DNA). Furthermore, viral mutants bearing mutations precluding any DNA synthesis secreted exclusively empty virions. Thus, viral DNA synthesis is not required for HBV virion morphogenesis. On the other hand, NCs containing RNA or SS DNA were excluded from virion formation. The secretion of DS DNA-containing as well as empty virions on one hand, and the lack of secretion of virions containing single-stranded (SS) DNA or RNA on the other, prompted us to propose an alternative, “Single Strand Blocking” model to explain selective HBV morphogenesis whereby SS nucleic acid within the NC negatively regulates NC envelopment, which is relieved upon second strand DNA synthesis

    Nuclear Export and Import of Human Hepatitis B Virus Capsid Protein and Particles

    Get PDF
    It remains unclear what determines the subcellular localization of hepatitis B virus (HBV) core protein (HBc) and particles. To address this fundamental issue, we have identified four distinct HBc localization signals in the arginine rich domain (ARD) of HBc, using immunofluorescence confocal microscopy and fractionation/Western blot analysis. ARD consists of four tight clustering arginine-rich subdomains. ARD-I and ARD-III are associated with two co-dependent nuclear localization signals (NLS), while ARD-II and ARD-IV behave like two independent nuclear export signals (NES). This conclusion is based on five independent lines of experimental evidence: i) Using an HBV replication system in hepatoma cells, we demonstrated in a double-blind manner that only the HBc of mutant ARD-II+IV, among a total of 15 ARD mutants, can predominantly localize to the nucleus. ii) These results were confirmed using a chimera reporter system by placing mutant or wild type HBc trafficking signals in the heterologous context of SV40 large T antigen (LT). iii) By a heterokaryon or homokaryon analysis, the fusion protein of SV40 LT-HBc ARD appeared to transport from nuclei of transfected donor cells to nuclei of recipient cells, suggesting the existence of an NES in HBc ARD. This putative NES is leptomycin B resistant. iv) We demonstrated by co-immunoprecipitation that HBc ARD can physically interact with a cellular factor TAP/NXF1 (Tip-associated protein/nuclear export factor-1), which is known to be important for nuclear export of mRNA and proteins. Treatment with a TAP-specific siRNA strikingly shifted cytoplasmic HBc to nucleus, and led to a near 7-fold reduction of viral replication, and a near 10-fold reduction in HBsAg secretion. v) HBc of mutant ARD-II+IV was accumulated predominantly in the nucleus in a mouse model by hydrodynamic delivery. In addition to the revised map of NLS, our results suggest that HBc could shuttle rapidly between nucleus and cytoplasm via a novel TAP-dependent NES

    Sur une Classe d\u27Équations de Fuchs non Linéaires

    No full text
    For nonlinear partial differential equations, with several Fuchsian variables, we give sufficient conditions concerning the existence and uniqueness of a holomorphic solution and concerning the convergence of formal power series solutions. We reduce the proof of the theorems to the proof of the fixed-point theorem in a Banach space defined by a majorant function that is suitable to this kind of equation. We show how one can deduce the generalization of these results under Gevrey regularity hypothesis with respect to the other variables
    corecore