22 research outputs found

    p75 neurotrophin receptor regulates energy balance in obesity

    Get PDF
    Obesity and metabolic syndrome reflect the dysregulation of molecular pathways that control energy homeostasis. Here, we show that the p75 neurotrophin receptor (p75NTR) controls energy expenditure in obese mice on a high-fat diet (HFD). Despite no changes in food intake, p75NTR-null mice were protected from HFD-induced obesity and remained lean as a result of increased energy expenditure without developing insulin resistance or liver steatosis. p75NTR directly interacts with the catalytic subunit of protein kinase A (PKA) and regulates cAMP signaling in adipocytes, leading to decreased lipolysis and thermogenesis. Adipocyte-specific depletion of p75NTR or transplantation of p75NTR-null white adipose tissue (WAT) into wild-type mice fed a HFD protected against weight gain and insulin resistance. Our results reveal that signaling from p75NTR to cAMP/PKA regulates energy balance and suggest that non-CNS neurotrophin receptor signaling could be a target for treating obesity and the metabolic syndrome

    NIH Workshop 2018: Towards Minimally Invasive or Noninvasive Approaches to Assess Tissue Oxygenation Pre- and Post-transfusion

    Get PDF
    Because blood transfusion is one of the most common therapeutic interventions in hospitalized patients, much recent research has focused on improving the storage quality in vitro of donor red blood cells (RBCs) that are then used for transfusion. However, there is a significant need for enhancing our understanding of the efficacy of the transfused RBCs in vivo. To this end, the NIH sponsored a one-and-a-half-day workshop that brought together experts in multiple disciplines relevant to tissue oxygenation (eg, transfusion medicine, critical care medicine, cardiology, neurology, neonatology and pediatrics, bioengineering, biochemistry, and imaging). These individuals presented their latest findings, discussed key challenges, and aimed to identify opportunities for facilitating development of new technologies and/or biomarker panels to assess tissue oxygenation in a minimally-invasive to non-invasive fashion, before and after RBC transfusion

    NIH Workshop 2018: Towards Minimally-invasive or Non-invasive Approaches to Assess Tissue Oxygenation Pre- and Post-Transfusion

    Get PDF
    Because blood transfusion is one of the most common therapeutic interventions in hospitalized patients, much recent research has focused on improving the storage quality in vitro of donor red blood cells (RBCs) that are then used for transfusion. However, there is a significant need for enhancing our understanding of the efficacy of the transfused RBCs in vivo. To this end, the NIH sponsored a one-and-a-half-day workshop that brought together experts in multiple disciplines relevant to tissue oxygenation (e.g., transfusion medicine, critical care medicine, cardiology, neurology, neonatology and pediatrics, bioengineering, biochemistry, and imaging). These individuals presented their latest findings, discussed key challenges, and aimed to construct recommendations for facilitating development of new technologies and/or biomarker panels to assess tissue oxygenation in a minimally-invasive to non-invasive fashion, before and after RBC transfusion. The workshop was structured into four sessions: (1) Global Perspective; (2) Organ Systems; (3) Neonatology; and (4) Emerging Technologies. The first day provided an overview of current approaches in the clinical setting, both from a global perspective, including the use of metabolomics for studying RBCs and tissue perfusion, and from a more focused perspective, including tissue oxygenation assessments in neonates and in specific adult organ systems. The second day focused on emerging technologies, which could be applied pre- and post-RBC transfusion, to assess tissue oxygenation in minimally-invasive or non-invasive ways. Each day concluded with an open-microphone discussion among the speakers and workshop participants. The workshop presentations and ensuing interdisciplinary discussions highlighted the potential of technologies to combine global “omics” signatures with additional measures (e.g., thenar eminence measurements or various imaging methods) to predict which patients could potentially benefit from a RBC transfusion and whether the ensuing RBC transfusion was effective. The discussions highlighted the need for collaborations across the various disciplines represented at the meeting to leverage existing technologies and to develop novel approaches for assessing RBC transfusion efficacy in various clinical settings. Although the Workshop took place in April, 2018, the concepts described and the ensuing discussions were, perhaps, even more relevant in April, 2020, at the time of writing this manuscript, during the explosive growth of the COVID-19 pandemic in the United States. Thus, issues relating to maintaining and improving tissue oxygenation and perfusion are especially pertinent because of the extensive pulmonary damage resulting from SARS-CoV-2 infection [1], compromises in perfusion caused by thrombotic-embolic phenomena [2], and damage to circulating RBCs, potentially compromising their oxygen-carrying capacity [3]. The severe end organ effects of SARS-CoV-2 infection mandate even more urgency for improving our understanding of tissue perfusion and oxygenation, improve methods for measuring and monitoring them, and develop novel ways of enhancing them

    Approches globales de l'état redox du résidu cystéine

    Get PDF
    Global approaches of redox state of cysteine residue Aerobic metabolism generates reactive oxygen species that oxidize cellular components, like protein cysteine residues. Two efficient electron flow pathways, the thioredoxine and the glutathione pathways, that catalyze thiol reduction, control cysteine oxidation. These two pathways use the sulfur redox chemistry to reduce oxidized cysteines with electrons provided by NADPH. We studied the redox state of cysteine residues and the respective contribution of the thioredoxine and glutathione pathways in thiol redox control.Thus, we combined S.cerevisiae genetic approaches to proteomic identification of oxidized protein thiols. These analyze reveled numbered oxidized cytoplasmic proteins, which contain one or more oxidized thiol, and established contrasted functions between thioredoxine and glutathione pathways in intracellular thiol redox control. We also focus on constitutively oxidized cytoplasmic protein: the superoxide dismutase. We studied this protein oxidation mechanism, that seems to be catalyzed in intermembrane space of mitochondria by specific oxidase.Le métabolisme de l'oxygène conduit à la formation d'espèces chimiques oxydantes, capables de provoquer l'oxydation de nombreux composants cellulaires, dont les résidus cystéines des protéines. L'oxydation du résidu cystéine est contrôlée par un système de réduction composé de deux branches distinctes, appelées la voie des thioredoxines et la voie du glutathion. Ces deux voies utilisent la chimie redox du soufre de la cystéine pour réduire les cystéines oxydées, avec des électrons fournis par le NADPH. Notre travail a consisté à étudier l'état d'oxydation des résidus cystéines de la cellule et la contribution respective des mécanismes opérant le contrôle de l'état redox des thiols. Pour cela, nous avons exploité les approches génétiques chez S.cerevisiae, et les avons couplés à une approche protéomique d'identification des thiols oxydés.Ce travail nous a permis d'identifier de nombreuses protéines cytoplasmiques portant un ou plusieurs résidus cystéine oxydés et d'établir une différence frappante entre les voies des thioredoxines et du glutathion dans le contrôle de l'état redox des thiols intracellulaires. Au cours de notre travail, nous nous sommes également intéressés à la superoxyde dismutase, une protéine cytoplasmique, que nous avons identifié comme oxydée constitutivement. Nous avons étudié le mécanisme d'oxydation de Sod1, et avons observé que celui-ci semble se dérouler dans l'espace intermembranaire mitochondrial et fait intervenir une oxydase spécifique des thiol

    In vivo functions of p75NTR: challenges and opportunities for an emerging therapeutic target

    No full text
    The p75 neurotrophin receptor (p75NTR) functions at the molecular nexus of cell death, survival, and differentiation. In addition to its contribution to neurodegenerative diseases and nervous system injuries, recent studies have revealed unanticipated roles of p75NTR in liver repair, fibrinolysis, lung fibrosis, muscle regeneration, and metabolism. Linking these various p75NTR functions more precisely to specific mechanisms marks p75NTR as an emerging candidate for therapeutic intervention in a wide range of disorders. Indeed, small molecule inhibitors of p75NTR binding to neurotrophins have shown efficacy in models of Alzheimer's disease (AD) and neurodegeneration. Here, we outline recent advances in understanding p75NTR pleiotropic functions in vivo, and propose an integrated view of p75NTR and its challenges and opportunities as a pharmacological target

    Model-Informed Support of Dose Selection for Prophylactic Treatment with Dalcinonacog Alfa in Adult and Paediatric Hemophilia B Patients

    No full text
    IntroductionDalcinonacog alfa (DalcA), a novel subcutaneously administered recombinant human factor IX (FIX) variant is being developed for adult and paediatric patients with hemophilia B (HB). DalcA has been shown to raise FIX to clinically meaningful levels in adults with HB. This work aimed to support dosing regimen selection in adults and perform first-in-paediatric dose extrapolations using a model-based pharmacokinetic (PK) approach.MethodsA population PK model was built using adult data from two clinical trials (NCT03186677, NCT03995784). With allometry in the model, clinical trial simulations were performed to study alternative dosing regimens in adults and children. Steady-state trough levels and the time-to-reach target were derived to inform dose selection.ResultsAlmost 90% of the adults were predicted to achieve desirable FIX levels, i.e. 10% FIX activity, following daily 100 IU/kg dosing, with 90% of the subjects reaching target within 1.6-7.1 days. No every-other-day regimen met the target. A dose of 125 IU/kg resulted in adequate FIX levels down to 6 years, whereas a 150 IU/kg dose was needed below 6 down to 2 years of age. For subjects down to 6 years that did not reach target with 125 IU/kg, a dose escalation to 150 IU/kg was appropriate. The children below 6 to 2 years were shown to need a dose escalation to 200 IU/kg if 150 IU/kg given daily was insufficient.ConclusionThis study supported the adult dose selection for DalcA in the presence of sparse data and enabled first-in-paediatric dose selection to achieve FIX levels that reduce risk of spontaneous bleeds

    Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor

    No full text
    Concentrations of acetyl-coenzyme A and nicotinamide adenine dinucleotide (NAD ) affect histone acetylation and thereby couple cellular metabolic status and transcriptional regulation. We report that the ketone body D-β-hydroxybutyrate (βOHB) is an endogenous and specific inhibitor of class I histone deacetylases (HDACs). Administration of exogenous βOHB, or fasting or calorie restriction, two conditions associated with increased βOHB abundance, all increased global histone acetylation in mouse tissues. Inhibition of HDAC by βOHB was correlated with global changes in transcription, including that of the genes encoding oxidative stress resistance factors FOXO3A and MT2. Treatment of cells with βOHB increased histone acetylation at the Foxo3a and Mt2 promoters, and both genes were activated by selective depletion of HDAC1 and HDAC2. Consistent with increased FOXO3A and MT2 activity, treatment of mice with βOHB conferred substantial protection against oxidative stress.
    corecore